期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合Sin混沌和分段权值的阿基米德优化算法 被引量:10
1
作者 罗仕杭 何庆 《计算机工程与应用》 CSCD 北大核心 2022年第14期63-72,共10页
针对阿基米德优化算法(Archimedes optimization algorithm,AOA)存在全局搜索能力弱、收敛精度低,易陷入局部最优等问题,提出融合Sin混沌和分段权值的阿基米德优化算法(SAOA)。采用无限折叠迭代的Sin混沌反向学习策略初始化种群,提高初... 针对阿基米德优化算法(Archimedes optimization algorithm,AOA)存在全局搜索能力弱、收敛精度低,易陷入局部最优等问题,提出融合Sin混沌和分段权值的阿基米德优化算法(SAOA)。采用无限折叠迭代的Sin混沌反向学习策略初始化种群,提高初始阶段解的质量,为全局搜索多样性奠定基础;引入算数交叉算子,将当前个体向与全局最优个体进行交叉,引导种群向最优解区域寻优,提高全局搜索能力;引入分段权值策略,平衡算法的全局勘探与局部开发能力,降低算法陷入局部最优的概率;通过对8个测试函数和部分CEC2014函数进行仿真实验及Wilcoxon秩和检验来评估改进算法的寻优性能,实验结果表明改进算法在搜索精度、收敛速度和稳定性等方面均有较大提升。另外,引入优化机械设计案例进行测试分析,进一步验证SAOA在工程优化问题上的可行性和适用性。 展开更多
关键词 阿基米德优化算法 Sin混沌反向学习 算数交叉操算子 分段权值 机械优化设计
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部