The remote sensing image classification has stimulated considerable interest as an effective method for better retrieving information from the rapidly increasing large volume, complex and distributed satellite remote ...The remote sensing image classification has stimulated considerable interest as an effective method for better retrieving information from the rapidly increasing large volume, complex and distributed satellite remote imaging data of large scale and cross-time, due to the increase of remote image quantities and image resolutions. In the paper, the genetic algorithms were employed to solve the weighting of the radial basis faction networks in order to improve the precision of remote sensing image classification. The remote sensing image classification was also introduced for the GIS spatial analysis and the spatial online analytical processing (OLAP), and the resulted effectiveness was demonstrated in the analysis of land utilization variation of Daqing city.展开更多
In late 2001, the Object Management Group issued a Request for Proposal to develop a testing profile for UML 2.0. In June 2003, the work on the UML 2.0 Testing Profile was finally adopted by the OMG. Since March 2004,...In late 2001, the Object Management Group issued a Request for Proposal to develop a testing profile for UML 2.0. In June 2003, the work on the UML 2.0 Testing Profile was finally adopted by the OMG. Since March 2004, it has become an official standard of the OMG. The UML 2.0 Testing Profile provides support for UML based model-driven testing. This paper introduces a methodology on how to use the testing profile in order to modify and extend an existing UML design model for test issues. The application of the methodology will be explained by applying it to an existing UML Model for a Bluetooth device.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No.40271044), Natural Science Foundation(Grant No.TK2005 -17) and Projectof Science Backbone of Heilongjiang Province(Grant No.1151G021).
文摘The remote sensing image classification has stimulated considerable interest as an effective method for better retrieving information from the rapidly increasing large volume, complex and distributed satellite remote imaging data of large scale and cross-time, due to the increase of remote image quantities and image resolutions. In the paper, the genetic algorithms were employed to solve the weighting of the radial basis faction networks in order to improve the precision of remote sensing image classification. The remote sensing image classification was also introduced for the GIS spatial analysis and the spatial online analytical processing (OLAP), and the resulted effectiveness was demonstrated in the analysis of land utilization variation of Daqing city.
文摘In late 2001, the Object Management Group issued a Request for Proposal to develop a testing profile for UML 2.0. In June 2003, the work on the UML 2.0 Testing Profile was finally adopted by the OMG. Since March 2004, it has become an official standard of the OMG. The UML 2.0 Testing Profile provides support for UML based model-driven testing. This paper introduces a methodology on how to use the testing profile in order to modify and extend an existing UML design model for test issues. The application of the methodology will be explained by applying it to an existing UML Model for a Bluetooth device.