本文针对一类广泛存在的分布式加工装配和车辆配送集成调度问题(Integrated Scheduling Problem of Distributed Production Assembly and Vehicle Delivery,ISP_DPAVD),以最小化运输和延迟惩罚总成本为优化目标,提出一种混合三维分布...本文针对一类广泛存在的分布式加工装配和车辆配送集成调度问题(Integrated Scheduling Problem of Distributed Production Assembly and Vehicle Delivery,ISP_DPAVD),以最小化运输和延迟惩罚总成本为优化目标,提出一种混合三维分布估计算法(Hybrid three-Dimensional Estimation of Distribution Algorithm,H3DEDA)进行求解.ISP_DPAVD包含两个耦合的子问题,即加工装配阶段子问题(子问题1)和车辆配送阶段子问题(子问题2).由于每个子问题1的解(部分解1)均会确定1个具体的子问题2,故ISP_DPAVD的解空间非常庞大.根据这一特点,在H3DEDA中,先设计结合邻域变换的启发式规则来快速获取子问题2的优良解,以实现子问题间的部分解耦并明显缩减搜索空间,再设计三维EDA引导的全局搜索和变邻域驱动的局部搜索来获取ISP_DPAVD的高质量解.通过在不同规模测试问题上的仿真实验和算法比较,验证了H3DEDA求解ISP_DPAVD的有效性.展开更多
随着分布式柔性制造系统的广泛普及,制造系统的调度决策从集中式的单一节点向分布式多中心的模式转变,分布式柔性作业车间调度问题成为近年来的研究热点。为求解分布式柔性作业车间的调度问题,构建了以最小化总成本和总拖期为优化目标...随着分布式柔性制造系统的广泛普及,制造系统的调度决策从集中式的单一节点向分布式多中心的模式转变,分布式柔性作业车间调度问题成为近年来的研究热点。为求解分布式柔性作业车间的调度问题,构建了以最小化总成本和总拖期为优化目标的分布式柔性作业车间调度(DFJSP,Distributed Flexible Job Shop Scheduling Problem)模型,提出了一种结合分布估计和禁忌搜索的H-EDA-TS算法(Hybrid Estimation of Distribution Algorithm and Tabu Search Algorithm)。根据DFJSP模型和H-EDA-TS算法设计了三维编码方案。H-EDA-TS算法主要包括EDA组件和TS组件,在EDA组件部分设计了三个概率模型用于抽样生成种群;在TS组件部分针对优化目标设计了五种邻域结构用于生成邻域解。此外,基于sigmoid函数设计了一种自适应机制,用于控制TS组件的启动。最后,在不同规模的实例上进行了对比实验,证明了所提算法对于求解DFJSP具有明显优势。展开更多
基于点云的空间非合作目标位姿估计,常受到噪声影响.提出截断最小二乘估计与半定松弛(truncated least squares estimation and semidefinite relaxation,TEASER)与迭代最近点(iterative closest point,ICP)的结合算法,提升空间非合作...基于点云的空间非合作目标位姿估计,常受到噪声影响.提出截断最小二乘估计与半定松弛(truncated least squares estimation and semidefinite relaxation,TEASER)与迭代最近点(iterative closest point,ICP)的结合算法,提升空间非合作目标位姿估计精度与鲁棒性.该方法包括粗配准与精配准两个环节:在粗配准环节中,基于局部点云与模型点云的方向直方图特征(signature of histogram of orientation,SHOT)确定匹配对,利用TEASER算法求解初始位姿;在精配准环节中,可结合ICP算法优化位姿估计结果.北斗卫星仿真实验表明:在连续帧位姿估计中,噪声标准差为3倍点云分辨率时,基于TEASER的周期关键帧配准方法的平移误差小于3.33 cm,旋转误差小于2.18°;与传统ICP方法相比,平均平移误差与平均旋转误差均有所降低.这表明所提出的空间非合作目标位姿估计方法具有良好的精度和鲁棒性.展开更多
针对碳定价背景下的低碳选址路径问题(Low-Carbon Location Routing Problem,LCLRP),首先构建了一种考虑油耗和碳排放成本,并以最小化设施选址成本、车辆启用成本以及运输成本为目标的选址-路径模型;其次,根据模型的特征,设计了一种分...针对碳定价背景下的低碳选址路径问题(Low-Carbon Location Routing Problem,LCLRP),首先构建了一种考虑油耗和碳排放成本,并以最小化设施选址成本、车辆启用成本以及运输成本为目标的选址-路径模型;其次,根据模型的特征,设计了一种分布估计灰狼算法(Grey Wolf Optimizer with Estimation of Distribution Algorithms,GWOEDA)对其进行求解。算法利用概率模型引导灰狼,并利用多父代交叉和两种邻域搜索算子增强了算法的全局搜索与局部搜索性能。算例分析结果表明:加入概率模型学习能力的灰狼算法在选址路径问题上有更好的寻优能力,并且在碳定价背景下,所构建的模型可以有效降低总成本和碳排放量。展开更多
文摘本文针对一类广泛存在的分布式加工装配和车辆配送集成调度问题(Integrated Scheduling Problem of Distributed Production Assembly and Vehicle Delivery,ISP_DPAVD),以最小化运输和延迟惩罚总成本为优化目标,提出一种混合三维分布估计算法(Hybrid three-Dimensional Estimation of Distribution Algorithm,H3DEDA)进行求解.ISP_DPAVD包含两个耦合的子问题,即加工装配阶段子问题(子问题1)和车辆配送阶段子问题(子问题2).由于每个子问题1的解(部分解1)均会确定1个具体的子问题2,故ISP_DPAVD的解空间非常庞大.根据这一特点,在H3DEDA中,先设计结合邻域变换的启发式规则来快速获取子问题2的优良解,以实现子问题间的部分解耦并明显缩减搜索空间,再设计三维EDA引导的全局搜索和变邻域驱动的局部搜索来获取ISP_DPAVD的高质量解.通过在不同规模测试问题上的仿真实验和算法比较,验证了H3DEDA求解ISP_DPAVD的有效性.
文摘随着分布式柔性制造系统的广泛普及,制造系统的调度决策从集中式的单一节点向分布式多中心的模式转变,分布式柔性作业车间调度问题成为近年来的研究热点。为求解分布式柔性作业车间的调度问题,构建了以最小化总成本和总拖期为优化目标的分布式柔性作业车间调度(DFJSP,Distributed Flexible Job Shop Scheduling Problem)模型,提出了一种结合分布估计和禁忌搜索的H-EDA-TS算法(Hybrid Estimation of Distribution Algorithm and Tabu Search Algorithm)。根据DFJSP模型和H-EDA-TS算法设计了三维编码方案。H-EDA-TS算法主要包括EDA组件和TS组件,在EDA组件部分设计了三个概率模型用于抽样生成种群;在TS组件部分针对优化目标设计了五种邻域结构用于生成邻域解。此外,基于sigmoid函数设计了一种自适应机制,用于控制TS组件的启动。最后,在不同规模的实例上进行了对比实验,证明了所提算法对于求解DFJSP具有明显优势。
文摘基于点云的空间非合作目标位姿估计,常受到噪声影响.提出截断最小二乘估计与半定松弛(truncated least squares estimation and semidefinite relaxation,TEASER)与迭代最近点(iterative closest point,ICP)的结合算法,提升空间非合作目标位姿估计精度与鲁棒性.该方法包括粗配准与精配准两个环节:在粗配准环节中,基于局部点云与模型点云的方向直方图特征(signature of histogram of orientation,SHOT)确定匹配对,利用TEASER算法求解初始位姿;在精配准环节中,可结合ICP算法优化位姿估计结果.北斗卫星仿真实验表明:在连续帧位姿估计中,噪声标准差为3倍点云分辨率时,基于TEASER的周期关键帧配准方法的平移误差小于3.33 cm,旋转误差小于2.18°;与传统ICP方法相比,平均平移误差与平均旋转误差均有所降低.这表明所提出的空间非合作目标位姿估计方法具有良好的精度和鲁棒性.
文摘针对碳定价背景下的低碳选址路径问题(Low-Carbon Location Routing Problem,LCLRP),首先构建了一种考虑油耗和碳排放成本,并以最小化设施选址成本、车辆启用成本以及运输成本为目标的选址-路径模型;其次,根据模型的特征,设计了一种分布估计灰狼算法(Grey Wolf Optimizer with Estimation of Distribution Algorithms,GWOEDA)对其进行求解。算法利用概率模型引导灰狼,并利用多父代交叉和两种邻域搜索算子增强了算法的全局搜索与局部搜索性能。算例分析结果表明:加入概率模型学习能力的灰狼算法在选址路径问题上有更好的寻优能力,并且在碳定价背景下,所构建的模型可以有效降低总成本和碳排放量。