The uniqueness problem of entire functions sharing one small function was studied. By Picard's Theorem, we proved that for two transcendental entire functionsf(z) and g(z), a positive integer n≥9, and a(z) (n...The uniqueness problem of entire functions sharing one small function was studied. By Picard's Theorem, we proved that for two transcendental entire functionsf(z) and g(z), a positive integer n≥9, and a(z) (not identically eaqual to zero) being a common small function related to f(z) and g(z), iffn(z)(f(z)-1)f'(z) and gn(z)(g(z)-1)g'(z) share a(z) ca, where CM is counting multiplicity, then g(z) ≡f(z). This is an extended version of Fang and Hong's theorem [ Fang ML, Hong W, A unicity theorem for entire functions concerning differential polynomials, Journal of Indian Pure Applied Mathematics, 2001, 32 (9): 1343-1348].展开更多
基金Funded by The National Natural Science Foundation of China under Grant No. 10671067.
文摘The uniqueness problem of entire functions sharing one small function was studied. By Picard's Theorem, we proved that for two transcendental entire functionsf(z) and g(z), a positive integer n≥9, and a(z) (not identically eaqual to zero) being a common small function related to f(z) and g(z), iffn(z)(f(z)-1)f'(z) and gn(z)(g(z)-1)g'(z) share a(z) ca, where CM is counting multiplicity, then g(z) ≡f(z). This is an extended version of Fang and Hong's theorem [ Fang ML, Hong W, A unicity theorem for entire functions concerning differential polynomials, Journal of Indian Pure Applied Mathematics, 2001, 32 (9): 1343-1348].