In order to ensure overall optimization of the underground metal mine production scale, multidisciplinary design optimization model of production scale which covers the subsystem objective function of income of produc...In order to ensure overall optimization of the underground metal mine production scale, multidisciplinary design optimization model of production scale which covers the subsystem objective function of income of production, safety and environmental impact in the underground metal mine was established by using multidisciplinary design optimization method. The coupling effects from various disciplines were fully considered, and adaptive mutative scale chaos immunization optimization algorithm was adopted to solve multidisciplinary design optimization model of underground metal mine production scale. Practical results show that multidisciplinary design optimization on production scale of an underground lead and zinc mine reflect the actual operating conditions more realistically, the production scale is about 1.25 Mt/a (Lead and zinc metal content of 160 000 t/a), the economic life is approximately 14 a, corresponding coefficient of production profits can be increased to 15.13%, safety factor can be increased to 5.4% and environmental impact coefficient can be reduced by 9.52%.展开更多
Existing research on data collection using wireless mobile vehicle network emphasizes the reliable delivery of information.However,other performance requirements such as life cycle of nodes,stability and security are ...Existing research on data collection using wireless mobile vehicle network emphasizes the reliable delivery of information.However,other performance requirements such as life cycle of nodes,stability and security are not set as primary design objectives.This makes data collection ability of vehicular nodes in real application environment inferior.By considering the features of nodes in wireless IoV,such as large scales of deployment,volatility and low time delay,an efficient data collection algorithm is proposed for mobile vehicle network environment.An adaptive sensing model is designed to establish vehicular data collection protocol.The protocol adopts group management in model communication.The vehicular sensing node in group can adjust network sensing chain according to sensing distance threshold with surrounding nodes.It will dynamically choose a combination of network sensing chains on basis of remaining energy and location characteristics of surrounding nodes.In addition,secure data collection between sensing nodes is undertaken as well.The simulation and experiments show that the vehicular node can realize secure and real-time data collection.Moreover,the proposed algorithm is superior in vehicular network life cycle,power consumption and reliability of data collection by comparing to other algorithms.展开更多
基金Project(2012BAK09B02-05) supported by the National "Twelfth Five-year" Science & Technology Support Plan of China
文摘In order to ensure overall optimization of the underground metal mine production scale, multidisciplinary design optimization model of production scale which covers the subsystem objective function of income of production, safety and environmental impact in the underground metal mine was established by using multidisciplinary design optimization method. The coupling effects from various disciplines were fully considered, and adaptive mutative scale chaos immunization optimization algorithm was adopted to solve multidisciplinary design optimization model of underground metal mine production scale. Practical results show that multidisciplinary design optimization on production scale of an underground lead and zinc mine reflect the actual operating conditions more realistically, the production scale is about 1.25 Mt/a (Lead and zinc metal content of 160 000 t/a), the economic life is approximately 14 a, corresponding coefficient of production profits can be increased to 15.13%, safety factor can be increased to 5.4% and environmental impact coefficient can be reduced by 9.52%.
基金supported by the National Nature Science Foundation of China(Grant61572188)A Project Supported by Scientif ic Research Fund of Hunan Provincial Education Department(14A047)+4 种基金the Natural Science Foundation of Fujian Province(Grant no.2014J05079)the Young and Middle-Aged Teachers Education Scientific Research Project of Fujian province(Grant nos.JA13248JA14254 and JA15368)the special scientific research funding for colleges and universities from Fujian Provincial Education Department(Grant no.JK2013043)the Research Project supported by Xiamen University of Technology(YKJ15019R)
文摘Existing research on data collection using wireless mobile vehicle network emphasizes the reliable delivery of information.However,other performance requirements such as life cycle of nodes,stability and security are not set as primary design objectives.This makes data collection ability of vehicular nodes in real application environment inferior.By considering the features of nodes in wireless IoV,such as large scales of deployment,volatility and low time delay,an efficient data collection algorithm is proposed for mobile vehicle network environment.An adaptive sensing model is designed to establish vehicular data collection protocol.The protocol adopts group management in model communication.The vehicular sensing node in group can adjust network sensing chain according to sensing distance threshold with surrounding nodes.It will dynamically choose a combination of network sensing chains on basis of remaining energy and location characteristics of surrounding nodes.In addition,secure data collection between sensing nodes is undertaken as well.The simulation and experiments show that the vehicular node can realize secure and real-time data collection.Moreover,the proposed algorithm is superior in vehicular network life cycle,power consumption and reliability of data collection by comparing to other algorithms.