A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the nov...A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the novel AFS system and the vehicle three-degree of freedom system,the concept and quantitative formulas of the novel AFS system steering performance were proposed.The steering road feel and steering portability were set as the optimizing targets with the steering stability and steering portability as the constraint conditions.According to the features of constrained optimization of multi-variable function,a multi-variable genetic algorithm for the system parameter optimization was designed.The simulation results show that based on parametric optimization of the multi-objective genetic algorithm,the novel AFS system can improve the steering road feel,steering portability and steering stability,thus the optimization method can provide a theoretical basis for the design and optimization of the novel AFS system.展开更多
The model of the differential steering system(DSS) of electric vehicle with motorized wheels and the three-degree-of-freedom dynamic model of vehicle are built.Based on these models,the concepts and quantitative expre...The model of the differential steering system(DSS) of electric vehicle with motorized wheels and the three-degree-of-freedom dynamic model of vehicle are built.Based on these models,the concepts and quantitative expressions of steering road feel,steering portability and steering stability are proposed.Through integrating the Monte Carlo descriptive sampling,elitist non-dominated sorting genetic algorithm(NSGA-II) and Taguchi robust design method,the system parameters are optimized with steering road feel and steering portability as optimization targets,and steering stability and steering portability as constraints.The simulation results show that the system optimized based on quality engineering can improve the steering road feel,guarantee steering stability and steering portability and thus provide a theoretical basis for the design and optimization of the electric vehicle with motorized wheels system.展开更多
The macro positioning stage with high-precision and rapid positioning ability plays a crucial role in the macro-micro combination positioning system. In this paper, we develop a practical method for the control of a 3...The macro positioning stage with high-precision and rapid positioning ability plays a crucial role in the macro-micro combination positioning system. In this paper, we develop a practical method for the control of a 3-RRR planar positioning system using online vision measurement as feedback. In this method, a monocular vision system is established to accomplish highprecision online pose measurement for the 3-RRR manipulator. Additionally, a robust and operable adaptive control algorithm,which incorporates a fuzzy controller and a PI controller, is employed to achieve precise and rapid positioning of the 3-RRR positioning system. A series of experiments are conducted to verify the positioning performances of the proposed method, and a conventional PI control algorithm is utilized for comparison. The experimental results indicate that using the proposed control approach, the parallel positioning system obtains high precision and shows higher efficiency and robustness, especially for the time-varying positioning system.展开更多
Ship maneuverability, in the field of ship engineering, is often predicted by maneuvering motion group (MMG) mathematical model. Then it is necessary to determine hydrodynamic coefficients and interaction force coef...Ship maneuverability, in the field of ship engineering, is often predicted by maneuvering motion group (MMG) mathematical model. Then it is necessary to determine hydrodynamic coefficients and interaction force coefficients of the model. Based on the data of free running model test, the problem for obtaining these coefficients is called inverse one. For the inverse problem, ill-posedness is inherent, nonlinearity and great computation happen, and the computation is also insensitive, unstable and time-consuming. In the paper, a regularization method is introduced to solve ill-posed problem and genetic algorithm is used for nonlinear motion of ship maneuvering. In addition, the immunity is applied to solve the prematurity, to promote the global searching ability and to increase the converging speed. The combination of regularization method and immune genetic algorithm(RIGA) applied in MMG mathematical model, showed rapid converging speed and good stability.展开更多
基金Project(51005115) supported by the National Natural Science Foundation of ChinaProject(KF11201) supported by the Science Fund of State Key Laboratory of Automotive Safety and Energy,ChinaProject(201105) supported by the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University,China
文摘A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the novel AFS system and the vehicle three-degree of freedom system,the concept and quantitative formulas of the novel AFS system steering performance were proposed.The steering road feel and steering portability were set as the optimizing targets with the steering stability and steering portability as the constraint conditions.According to the features of constrained optimization of multi-variable function,a multi-variable genetic algorithm for the system parameter optimization was designed.The simulation results show that based on parametric optimization of the multi-objective genetic algorithm,the novel AFS system can improve the steering road feel,steering portability and steering stability,thus the optimization method can provide a theoretical basis for the design and optimization of the novel AFS system.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51005115 and 51005248)the Science Fund of State Key Laboratory of Automotive Safety and Energy (Grant No. KF11201)
文摘The model of the differential steering system(DSS) of electric vehicle with motorized wheels and the three-degree-of-freedom dynamic model of vehicle are built.Based on these models,the concepts and quantitative expressions of steering road feel,steering portability and steering stability are proposed.Through integrating the Monte Carlo descriptive sampling,elitist non-dominated sorting genetic algorithm(NSGA-II) and Taguchi robust design method,the system parameters are optimized with steering road feel and steering portability as optimization targets,and steering stability and steering portability as constraints.The simulation results show that the system optimized based on quality engineering can improve the steering road feel,guarantee steering stability and steering portability and thus provide a theoretical basis for the design and optimization of the electric vehicle with motorized wheels system.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1501247&U1609206)the Science and Technology Research Projects of Guangdong Province(Grant No.2015090330001)the Natural Science Foundation of Guangdong Province(Grant Nos.S2013030013355&2016A030310408)
文摘The macro positioning stage with high-precision and rapid positioning ability plays a crucial role in the macro-micro combination positioning system. In this paper, we develop a practical method for the control of a 3-RRR planar positioning system using online vision measurement as feedback. In this method, a monocular vision system is established to accomplish highprecision online pose measurement for the 3-RRR manipulator. Additionally, a robust and operable adaptive control algorithm,which incorporates a fuzzy controller and a PI controller, is employed to achieve precise and rapid positioning of the 3-RRR positioning system. A series of experiments are conducted to verify the positioning performances of the proposed method, and a conventional PI control algorithm is utilized for comparison. The experimental results indicate that using the proposed control approach, the parallel positioning system obtains high precision and shows higher efficiency and robustness, especially for the time-varying positioning system.
文摘Ship maneuverability, in the field of ship engineering, is often predicted by maneuvering motion group (MMG) mathematical model. Then it is necessary to determine hydrodynamic coefficients and interaction force coefficients of the model. Based on the data of free running model test, the problem for obtaining these coefficients is called inverse one. For the inverse problem, ill-posedness is inherent, nonlinearity and great computation happen, and the computation is also insensitive, unstable and time-consuming. In the paper, a regularization method is introduced to solve ill-posed problem and genetic algorithm is used for nonlinear motion of ship maneuvering. In addition, the immunity is applied to solve the prematurity, to promote the global searching ability and to increase the converging speed. The combination of regularization method and immune genetic algorithm(RIGA) applied in MMG mathematical model, showed rapid converging speed and good stability.