Since there are many factors affecting the quality of wine, total 17 factors were screened out using principle component analysis. The difference test was conducted on the evaluation data of the two groups of testers....Since there are many factors affecting the quality of wine, total 17 factors were screened out using principle component analysis. The difference test was conducted on the evaluation data of the two groups of testers. The results showed that the evaluation data of the second group were more reliable compared with those of the first group. At the same time, the KM algorithm was optimized using the QPSO algorithm. The wine classification model was established. Compared with the other two algorithms, the QPSO-KM algorithm was more capable of searching the globally optimum solution, and it could be used to classify the wine samples. In addition,the QPSO-KM algorithm could also be used to solve the issues about clustering.展开更多
A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to...A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to improve the performance of the DE algorithm. During the actual operation, ISDE seeks the optimal parameters arising from the evolutionary process, which enable ISDE to alter the algorithm for different optimization problems and improve the performance of ISDE by the control parameters' self-adaptation. The .performance of the proposed method is studied with the use of nine benchmark problems and compared with original DE algorithm ~nd-other well-known self-adaptive DE algorithms. The experiments conducted show that the ISDE clearly outperforms the other DE algorithms in all benchmark functions. Furthermore, ISDE is applied to develop the kinetic model for homogeneous mercury. (Hg) oxidation in flue gas, and satisfactory results are obtained.展开更多
Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with it...Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with iterated observation update and the interacting multiple model method,a novel interacting multiple model algorithm based on the cubature Kalman filter with observation iterated update is proposed.Firstly,aiming to the structural features of cubature Kalman filter,the cubature Kalman filter with observation iterated update is constructed by the mechanism of iterated observation update.Secondly,the improved cubature Kalman filter is used as the model filter of interacting multiple model,and the stability and reliability of model identification and state estimation are effectively promoted by the optimization of model filtering step.In the simulations,compared with classic improved interacting multiple model algorithms,the theoretical analysis and experimental results show the feasibility and validity of the proposed algorithm.展开更多
At the time of writing,coronavirus disease 2019(COVID-19)is seriously threatening human lives and health throughout the world.Many epidemic models have been developed to provide references for decision-making by gover...At the time of writing,coronavirus disease 2019(COVID-19)is seriously threatening human lives and health throughout the world.Many epidemic models have been developed to provide references for decision-making by governments and the World Health Organization.To capture and understand the characteristics of the epidemic trend,parameter optimization algorithms are needed to obtain model parameters.In this study,the authors propose using the Levenberg–Marquardt algorithm(LMA)to identify epidemic models.This algorithm combines the advantage of the Gauss–Newton method and gradient descent method and has improved the stability of parameters.The authors selected four countries with relatively high numbers of confirmed cases to verify the advantages of the Levenberg–Marquardt algorithm over the traditional epidemiological model method.The results show that the Statistical-SIR(Statistical-Susceptible–Infected–Recovered)model using LMA can fit the actual curve of the epidemic well,while the epidemic simulation of the traditional model evolves too fast and the peak value is too high to reflect the real situation.展开更多
According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are comput...According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are computed to determine the time delay and the embedding dimension.Due to different features of the data,data mining algorithm is conducted to classify the data into different groups.Redundant information is eliminated by the advantage of data mining technology,and the historical loads that have highly similar features with the forecasting day are searched by the system.As a result,the training data can be decreased and the computing speed can also be improved when constructing support vector machine(SVM) model.Then,SVM algorithm is used to predict power load with parameters that get in pretreatment.In order to prove the effectiveness of the new model,the calculation with data mining SVM algorithm is compared with that of single SVM and back propagation network.It can be seen that the new DSVM algorithm effectively improves the forecast accuracy by 0.75%,1.10% and 1.73% compared with SVM for two random dimensions of 11-dimension,14-dimension and BP network,respectively.This indicates that the DSVM gains perfect improvement effect in the short-term power load forecasting.展开更多
Shor proposed a polynomial time algorithm for computing the order of one element in a multiplicative group using a quantum computer. Based on Miller’s randomization, he then gave a factorization algorithm. But the al...Shor proposed a polynomial time algorithm for computing the order of one element in a multiplicative group using a quantum computer. Based on Miller’s randomization, he then gave a factorization algorithm. But the algorithm has two shortcomings, the order must be even and the output might be a trivial factor. Actually, these drawbacks can be overcome if the number is an RSA modulus. Applying the special structure of the RSA modulus, an algorithm is presented to overcome the two shortcomings. The new algorithm improves Shor’s algorithm for factoring RSA modulus. The cost of the factorization algorithm almost depends on the calculation of the order of 2 in the multiplication group.展开更多
Recently the content centric networks(CCNs) have been advocated as a new solution to design future networks. In the CCNs, content and its interest are delivered over the content store and pending interest table, respe...Recently the content centric networks(CCNs) have been advocated as a new solution to design future networks. In the CCNs, content and its interest are delivered over the content store and pending interest table, respectively, where both have limited capacities. Therefore, how to design the corresponding algorithms to efficiently deliver content and inertest over them becomes an important issue. In this paper, based on the analysis of content distribution, status of content store, and pending interest, we propose a novel caching algorithm with which the resources of content store and pending interest table can be efficiently used. Simulation results prove that the proposal can outperform the conventional methods.展开更多
To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle fi...To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle filter is presented in this paper. The algorithm realizes dynamic combination of multiple model particle filter and joint probabilistic data association algorithm. The rapid expan- sion of computational complexity, caused by the simple combination of the interacting multiple model algorithm and particle filter is solved by introducing model information into the sampling process of particle state, and the effective validation and utilization of echo is accomplished by the joint proba- bilistic data association algorithm. The concrete steps of the algorithm are given, and the theory analysis and simulation results show the validity of the method.展开更多
Particle size distributions of obtained samples from several sampling campaigns were determined and raw data were mass balanced before being used in simulation studies.After determination of breakage function,selectio...Particle size distributions of obtained samples from several sampling campaigns were determined and raw data were mass balanced before being used in simulation studies.After determination of breakage function,selection function,Bond work index,residence time distribution parameters,and Whiten's model parameters for air separators and diaphragms between the two compartments of tube ball mills,performance of the circuits was simulated for given throughputs and feed particle size distribution.Whiten's model parameters were determined by GA(genetic algorithm) toolbox of MATLAB software.Based on implemented models for modeling and simulation,optimization of circuits was carried out.It increased nearly 10.5% and 15.8% in fresh feed capacity input to each tube ball mill.In addition,circulating load ratios of circuits are modified to 118% and 127% from low level of 57% and 22%,respectively,and also cut points of air separators are adjusted at 30 and 40 μm from high range of 53 and 97 μm,respectively.All applications helped in well-operation and energy consumption reduction of equipments.展开更多
Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approa...Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approach, the maximum and minimum of partial derivative for input and output nonlinearities are solved in the neighbourhood of the equilibrium. And several parameter-dependent Lyapunov functions, each one corresponding to a different vertex of polytopic descriptions models, are introduced to analyze the stability of Hammerstein-Wiener systems, but only one Lyapunov function is utilized to analyze system stability like the traditional method. Consequently, the conservation of the traditional quadratic stability is removed, and the terminal regions are enlarged. Simulation and field trial results show that the proposed algorithm is valid. It has higher control precision and shorter blowing time than the traditional approach.展开更多
The computation burden in the model-based predictive control algorithm is heavy when solving QR optimization with a limited sampling step, especially for a complicated system with large dimension. A fast algorithm is ...The computation burden in the model-based predictive control algorithm is heavy when solving QR optimization with a limited sampling step, especially for a complicated system with large dimension. A fast algorithm is proposed in this paper to solve this problem, in which real-time values are modulated to bit streams to simplify the multiplication. In addition, manipulated variables in the prediction horizon are deduced to the current control horizon approximately by a recursive relation to decrease the dimension of QR optimization. The simulation results demonstrate the feasibility of this fast algorithm for MIMO systems.展开更多
In this paper,a fast neural network model for the forecasting of effective points by DEA model is proposed,which is based on the SPDS training algorithm.The SPDS training algorithm overcomes the drawbacks of slow conv...In this paper,a fast neural network model for the forecasting of effective points by DEA model is proposed,which is based on the SPDS training algorithm.The SPDS training algorithm overcomes the drawbacks of slow convergent speed and partially minimum result for BP algorithm.Its training speed is much faster and its forecasting precision is much better than those of BP algorithm.By numeric examples,it is showed that adopting the neural network model in the forecasting of effective points by DEA model is valid.展开更多
Abstract: A hierarchical method for scene analysis in audio sensor networks is proposed. This meth-od consists of two stages: element detection stage and audio scene analysis stage. In the former stage, the basic au...Abstract: A hierarchical method for scene analysis in audio sensor networks is proposed. This meth-od consists of two stages: element detection stage and audio scene analysis stage. In the former stage, the basic audio elements are modeled by the HMM models and trained by enough samples off-line, and we adaptively add or remove basic ele- ment from the targeted element pool according to the time, place and other environment parameters. In the latter stage, a data fusion algorithm is used to combine the sensory information of the same ar-ea, and then, a role-based method is employed to analyze the audio scene based on the fused data. We conduct some experiments to evaluate the per-formance of the proposed method that about 70% audio scenes can be detected correctly by this method. The experiment evaluations demonstrate that our method can achieve satisfactory results.展开更多
This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algo...This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algorithm's cost-efficiency ratio being not high and the Markov transition probability of the interacting multiple model (IMM) algorithm being difficult to determine exactly. This algorithm realizes the adaptive model set by adaptive grid adjustment, and obtains each model matching degree in the model set by fuzzy logic inference. The simulation results show that the AGFIMM algorithm can effectively improve the accuracy and cost-efficiency ratio of the multiple model algorithm, and as a result is suitable for enineering apolications.展开更多
In order to solve the bottleneck problem of the traditional K-Medoids clustering algorithm facing to deal with massive data information at the time of memory capacity and processing speed of CPU, the paper proposed a ...In order to solve the bottleneck problem of the traditional K-Medoids clustering algorithm facing to deal with massive data information at the time of memory capacity and processing speed of CPU, the paper proposed a parallel algorithm MapReduce programming model based on the research of K-Medoids algorithm. This algorithm increase the computation granularity and reduces the communication cost ratio based on the MapReduce model. The experimental results show that the improved parallel algorithm compared with other algorithms, speedup and operation efficiency is greatly enhanced.展开更多
A novel multiple watermarks cooperative authentication algorithm was presented for image contents authentication.This algorithm is able to extract multiple features from the image wavelet domain,which is based on that...A novel multiple watermarks cooperative authentication algorithm was presented for image contents authentication.This algorithm is able to extract multiple features from the image wavelet domain,which is based on that the t watermarks are generated.Moreover,a new watermark embedding method,using the space geometric model,was proposed,in order to effectively tackle with the mutual influences problem among t watermarks.Specifically,the incidental tampering location,the classification of intentional content tampering and the incidental modification can be achieved via mutual cooperation of the t watermarks.Both the theoretical analysis and simulations results validate the feasibility and efficacy of the proposed algorithm.展开更多
Because of the difficulty in deciding on the structure of BP neural network in operational meteorological application and the tendency for the network to transform to an issue of local solution, a hybrid Particle Swar...Because of the difficulty in deciding on the structure of BP neural network in operational meteorological application and the tendency for the network to transform to an issue of local solution, a hybrid Particle Swarm Optimization Algorithm based on Artificial Neural Network (PSO-BP) model is proposed for monthly mean rainfall of the whole area of Guangxi. It combines Particle Swarm Optimization (PSO) with BP, that is, the number of hidden nodes and connection weights are optimized by the implementation of PSO operation. The method produces a better network architecture and initial connection weights, trains the traditional backward propagation again by training samples. The ensemble strategy is carried out for the linear programming to calculate the best weights based on the "east sum of the error absolute value" as the optimal rule. The weighted coefficient of each ensemble individual is obtained. The results show that the method can effectively improve learning and generalization ability of the neural network.展开更多
The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of...The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of soil.In order to save computing time during parameter inversion,a new procedure to compute the calculated strains is presented by multi-linear simplification approach instead of finite element method(FEM).The real-coded hybrid genetic algorithm is developed by combining normal genetic algorithm with gradient-based optimization algorithm.The numerical and experimental results for conditioned soil are compared.The forecast strains based on identified nonlinear constitutive model of soil agree well with observed ones.The effectiveness and accuracy of proposed parameter estimation approach are validated.展开更多
文摘Since there are many factors affecting the quality of wine, total 17 factors were screened out using principle component analysis. The difference test was conducted on the evaluation data of the two groups of testers. The results showed that the evaluation data of the second group were more reliable compared with those of the first group. At the same time, the KM algorithm was optimized using the QPSO algorithm. The wine classification model was established. Compared with the other two algorithms, the QPSO-KM algorithm was more capable of searching the globally optimum solution, and it could be used to classify the wine samples. In addition,the QPSO-KM algorithm could also be used to solve the issues about clustering.
基金Supported by the National Natural Science Foundation of China (20506003, 20776042) and the National High-Tech Research and Development Program of China (2007AA04Z 164).
文摘A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to improve the performance of the DE algorithm. During the actual operation, ISDE seeks the optimal parameters arising from the evolutionary process, which enable ISDE to alter the algorithm for different optimization problems and improve the performance of ISDE by the control parameters' self-adaptation. The .performance of the proposed method is studied with the use of nine benchmark problems and compared with original DE algorithm ~nd-other well-known self-adaptive DE algorithms. The experiments conducted show that the ISDE clearly outperforms the other DE algorithms in all benchmark functions. Furthermore, ISDE is applied to develop the kinetic model for homogeneous mercury. (Hg) oxidation in flue gas, and satisfactory results are obtained.
基金Supported by the National Nature Science Foundations of China(No.61300214,U1204611,61170243)the Science and Technology Innovation Team Support Plan of Education Department of Henan Province(No.13IRTSTHN021)+3 种基金the Science and Technology Research Key Project of Education Department of Henan Province(No.13A413066)the Basic and Frontier Technology Research Plan of Henan Province(No.132300410148)the Funding Scheme of Young Key Teacher of Henan Province Universitiesthe Key Project of Teaching Reform Research of Henan University(No.HDXJJG2013-07)
文摘Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with iterated observation update and the interacting multiple model method,a novel interacting multiple model algorithm based on the cubature Kalman filter with observation iterated update is proposed.Firstly,aiming to the structural features of cubature Kalman filter,the cubature Kalman filter with observation iterated update is constructed by the mechanism of iterated observation update.Secondly,the improved cubature Kalman filter is used as the model filter of interacting multiple model,and the stability and reliability of model identification and state estimation are effectively promoted by the optimization of model filtering step.In the simulations,compared with classic improved interacting multiple model algorithms,the theoretical analysis and experimental results show the feasibility and validity of the proposed algorithm.
基金This work was jointly supported by the National Natural Science Foundation of China[grant number 41521004]the Gansu Provincial Special Fund Project for Guiding Scientific and Technological Innovation and Development[grant number 2019ZX-06].
文摘At the time of writing,coronavirus disease 2019(COVID-19)is seriously threatening human lives and health throughout the world.Many epidemic models have been developed to provide references for decision-making by governments and the World Health Organization.To capture and understand the characteristics of the epidemic trend,parameter optimization algorithms are needed to obtain model parameters.In this study,the authors propose using the Levenberg–Marquardt algorithm(LMA)to identify epidemic models.This algorithm combines the advantage of the Gauss–Newton method and gradient descent method and has improved the stability of parameters.The authors selected four countries with relatively high numbers of confirmed cases to verify the advantages of the Levenberg–Marquardt algorithm over the traditional epidemiological model method.The results show that the Statistical-SIR(Statistical-Susceptible–Infected–Recovered)model using LMA can fit the actual curve of the epidemic well,while the epidemic simulation of the traditional model evolves too fast and the peak value is too high to reflect the real situation.
基金Project(70671039) supported by the National Natural Science Foundation of China
文摘According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are computed to determine the time delay and the embedding dimension.Due to different features of the data,data mining algorithm is conducted to classify the data into different groups.Redundant information is eliminated by the advantage of data mining technology,and the historical loads that have highly similar features with the forecasting day are searched by the system.As a result,the training data can be decreased and the computing speed can also be improved when constructing support vector machine(SVM) model.Then,SVM algorithm is used to predict power load with parameters that get in pretreatment.In order to prove the effectiveness of the new model,the calculation with data mining SVM algorithm is compared with that of single SVM and back propagation network.It can be seen that the new DSVM algorithm effectively improves the forecast accuracy by 0.75%,1.10% and 1.73% compared with SVM for two random dimensions of 11-dimension,14-dimension and BP network,respectively.This indicates that the DSVM gains perfect improvement effect in the short-term power load forecasting.
文摘Shor proposed a polynomial time algorithm for computing the order of one element in a multiplicative group using a quantum computer. Based on Miller’s randomization, he then gave a factorization algorithm. But the algorithm has two shortcomings, the order must be even and the output might be a trivial factor. Actually, these drawbacks can be overcome if the number is an RSA modulus. Applying the special structure of the RSA modulus, an algorithm is presented to overcome the two shortcomings. The new algorithm improves Shor’s algorithm for factoring RSA modulus. The cost of the factorization algorithm almost depends on the calculation of the order of 2 in the multiplication group.
基金supported in part by the fundamental key research project of Shanghai Municipal Science and Technology Commission under grant 12JC1404201the Ministry of Education Research Fund-China Mobile(2012) MCM20121032
文摘Recently the content centric networks(CCNs) have been advocated as a new solution to design future networks. In the CCNs, content and its interest are delivered over the content store and pending interest table, respectively, where both have limited capacities. Therefore, how to design the corresponding algorithms to efficiently deliver content and inertest over them becomes an important issue. In this paper, based on the analysis of content distribution, status of content store, and pending interest, we propose a novel caching algorithm with which the resources of content store and pending interest table can be efficiently used. Simulation results prove that the proposal can outperform the conventional methods.
基金Supported by the National Natural Science Foundation of China (60634030), the National Natural Science Foundation of China (60702066, 6097219) and the Natural Science Foundation of Henan Province (092300410158).
文摘To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle filter is presented in this paper. The algorithm realizes dynamic combination of multiple model particle filter and joint probabilistic data association algorithm. The rapid expan- sion of computational complexity, caused by the simple combination of the interacting multiple model algorithm and particle filter is solved by introducing model information into the sampling process of particle state, and the effective validation and utilization of echo is accomplished by the joint proba- bilistic data association algorithm. The concrete steps of the algorithm are given, and the theory analysis and simulation results show the validity of the method.
基金financially supported by University of Tehran under contract number 450/51027041 with Iran Ministry of Industries and Mines
文摘Particle size distributions of obtained samples from several sampling campaigns were determined and raw data were mass balanced before being used in simulation studies.After determination of breakage function,selection function,Bond work index,residence time distribution parameters,and Whiten's model parameters for air separators and diaphragms between the two compartments of tube ball mills,performance of the circuits was simulated for given throughputs and feed particle size distribution.Whiten's model parameters were determined by GA(genetic algorithm) toolbox of MATLAB software.Based on implemented models for modeling and simulation,optimization of circuits was carried out.It increased nearly 10.5% and 15.8% in fresh feed capacity input to each tube ball mill.In addition,circulating load ratios of circuits are modified to 118% and 127% from low level of 57% and 22%,respectively,and also cut points of air separators are adjusted at 30 and 40 μm from high range of 53 and 97 μm,respectively.All applications helped in well-operation and energy consumption reduction of equipments.
基金Project(61074074) supported by the National Natural Science Foundation,ChinaProject(KT2012C01J0401) supported by the Group Innovative Fund,China
文摘Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approach, the maximum and minimum of partial derivative for input and output nonlinearities are solved in the neighbourhood of the equilibrium. And several parameter-dependent Lyapunov functions, each one corresponding to a different vertex of polytopic descriptions models, are introduced to analyze the stability of Hammerstein-Wiener systems, but only one Lyapunov function is utilized to analyze system stability like the traditional method. Consequently, the conservation of the traditional quadratic stability is removed, and the terminal regions are enlarged. Simulation and field trial results show that the proposed algorithm is valid. It has higher control precision and shorter blowing time than the traditional approach.
基金Supported by the National Natural Science Foundation of China(61333010,61203157)the Fundamental Research Funds for the Central Universities+2 种基金the National High-Tech Research and Development Program of China(2013AA040701)Shanghai Natural Science Foundation Project(15ZR1408900)Shanghai Key Technologies R&D Program Project(13111103800)
文摘The computation burden in the model-based predictive control algorithm is heavy when solving QR optimization with a limited sampling step, especially for a complicated system with large dimension. A fast algorithm is proposed in this paper to solve this problem, in which real-time values are modulated to bit streams to simplify the multiplication. In addition, manipulated variables in the prediction horizon are deduced to the current control horizon approximately by a recursive relation to decrease the dimension of QR optimization. The simulation results demonstrate the feasibility of this fast algorithm for MIMO systems.
基金Sponsored by the Natural Scientific Research Foundation of Heilongjiang Province(Grant No.40000045-6-07259)the Natural Scientific Research Inno-vation Foundation of Harbin Institute of Technology(Grant No.HIT.NSRIF.2008.59)+1 种基金the Scientific and Technology Critical Project of Harbin,Hei-longjiang Province(2004)the National Soft Science Key Foundation(Grant No.2008GXS5D113)
文摘In this paper,a fast neural network model for the forecasting of effective points by DEA model is proposed,which is based on the SPDS training algorithm.The SPDS training algorithm overcomes the drawbacks of slow convergent speed and partially minimum result for BP algorithm.Its training speed is much faster and its forecasting precision is much better than those of BP algorithm.By numeric examples,it is showed that adopting the neural network model in the forecasting of effective points by DEA model is valid.
基金This work was supported by the Projects of the National Nat-ura! Science Foundation of China under Crant No.U0835001 the Fundamental Research Funds for the Central Universities-2011PTB-00-28.
文摘Abstract: A hierarchical method for scene analysis in audio sensor networks is proposed. This meth-od consists of two stages: element detection stage and audio scene analysis stage. In the former stage, the basic audio elements are modeled by the HMM models and trained by enough samples off-line, and we adaptively add or remove basic ele- ment from the targeted element pool according to the time, place and other environment parameters. In the latter stage, a data fusion algorithm is used to combine the sensory information of the same ar-ea, and then, a role-based method is employed to analyze the audio scene based on the fused data. We conduct some experiments to evaluate the per-formance of the proposed method that about 70% audio scenes can be detected correctly by this method. The experiment evaluations demonstrate that our method can achieve satisfactory results.
基金Foundation item: Supported by the National Nature Science Foundation of China (No. 61074053, 61374114) and the Applied Basic Research Program of Ministry of Transport of China (No. 2011-329-225 -390).
文摘This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algorithm's cost-efficiency ratio being not high and the Markov transition probability of the interacting multiple model (IMM) algorithm being difficult to determine exactly. This algorithm realizes the adaptive model set by adaptive grid adjustment, and obtains each model matching degree in the model set by fuzzy logic inference. The simulation results show that the AGFIMM algorithm can effectively improve the accuracy and cost-efficiency ratio of the multiple model algorithm, and as a result is suitable for enineering apolications.
文摘In order to solve the bottleneck problem of the traditional K-Medoids clustering algorithm facing to deal with massive data information at the time of memory capacity and processing speed of CPU, the paper proposed a parallel algorithm MapReduce programming model based on the research of K-Medoids algorithm. This algorithm increase the computation granularity and reduces the communication cost ratio based on the MapReduce model. The experimental results show that the improved parallel algorithm compared with other algorithms, speedup and operation efficiency is greatly enhanced.
基金Project(2012BAH09B02) supported by the National Science and Technology Support Program,ChinaProjects(12JJ3068,12JJ2041) supported by the Natural Science Fundation of Hunan Province,China
文摘A novel multiple watermarks cooperative authentication algorithm was presented for image contents authentication.This algorithm is able to extract multiple features from the image wavelet domain,which is based on that the t watermarks are generated.Moreover,a new watermark embedding method,using the space geometric model,was proposed,in order to effectively tackle with the mutual influences problem among t watermarks.Specifically,the incidental tampering location,the classification of intentional content tampering and the incidental modification can be achieved via mutual cooperation of the t watermarks.Both the theoretical analysis and simulations results validate the feasibility and efficacy of the proposed algorithm.
基金Natural Science Foundation of Guangxi (0832019Z)Natural Science Foundation of China (40675023)
文摘Because of the difficulty in deciding on the structure of BP neural network in operational meteorological application and the tendency for the network to transform to an issue of local solution, a hybrid Particle Swarm Optimization Algorithm based on Artificial Neural Network (PSO-BP) model is proposed for monthly mean rainfall of the whole area of Guangxi. It combines Particle Swarm Optimization (PSO) with BP, that is, the number of hidden nodes and connection weights are optimized by the implementation of PSO operation. The method produces a better network architecture and initial connection weights, trains the traditional backward propagation again by training samples. The ensemble strategy is carried out for the linear programming to calculate the best weights based on the "east sum of the error absolute value" as the optimal rule. The weighted coefficient of each ensemble individual is obtained. The results show that the method can effectively improve learning and generalization ability of the neural network.
基金Project(2007CB714006) supported by the National Basic Research Program of China Project(90815023) supported by the National Natural Science Foundation of China
文摘The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of soil.In order to save computing time during parameter inversion,a new procedure to compute the calculated strains is presented by multi-linear simplification approach instead of finite element method(FEM).The real-coded hybrid genetic algorithm is developed by combining normal genetic algorithm with gradient-based optimization algorithm.The numerical and experimental results for conditioned soil are compared.The forecast strains based on identified nonlinear constitutive model of soil agree well with observed ones.The effectiveness and accuracy of proposed parameter estimation approach are validated.