The thermal infrared channel (IRS4) of HJ-1B satellite obtains view zenith angles (VZA) up to ±33°. The view angle should be taken into account when retrieving land surface temperature (LST) from IRS4 data. ...The thermal infrared channel (IRS4) of HJ-1B satellite obtains view zenith angles (VZA) up to ±33°. The view angle should be taken into account when retrieving land surface temperature (LST) from IRS4 data. This study aims at improving the mono-window algorithm for retrieving LST from IRS4 data. Based on atmospheric radiative transfer simulations,a model for correcting the VZA effects on atmospheric transmittance is proposed. In addition,a generalized model for calculating the effective mean atmospheric temperature is developed. Validation with the simulated dataset based on standard atmospheric profiles reveals that the improved mono-window algorithm for IRS4 obtains high accuracy for LST retrieval,with the mean absolute error (MAE) and root mean square error (RMSE) being 1.0 K and 1.1 K,respectively. Numerical experiment with the radiosonde profile acquired in Beijing in winter demonstrates that the improved mono-window algorithm exhibits excellent ability for LST retrieval,with MAE and RMSE being 0.6 K and 0.6 K,respectively. Further application in Qinghai Lake and comparison with the Moderate-Resolution Imaging Spectroradiometer (MODIS) LST product suggest that the improved mono-window algorithm is applicable and feasible in actual conditions.展开更多
Taxonomy is generated to effectively organize and access large volume of data. A taxonomy is a way of representing concepts that exist in data. It needs to continuously evolve to reflect changes in data. Existing auto...Taxonomy is generated to effectively organize and access large volume of data. A taxonomy is a way of representing concepts that exist in data. It needs to continuously evolve to reflect changes in data. Existing automatic taxonomy generation techniques do not handle the evolution of data; therefore, the generated taxonomies do not truly represent the data. The evolution of data can be handled by either regenerating taxonomy from scratch, or allowing taxonomy to incrementally evolve whenever changes occur in the data. The former approach is not economical in terms of time and resources. A taxonomy incremental evolution(TIE) algorithm, as proposed, is a novel attempt to handle the data that evolve in time. It serves as a layer over an existing clustering-based taxonomy generation technique and allows an existing taxonomy to incrementally evolve. The algorithm was evaluated in research articles selected from the computing domain. It was found that the taxonomy using the algorithm that evolved with data needed considerably shorter time, and had better quality per unit time as compared to the taxonomy regenerated from scratch.展开更多
基金Under the auspices of Opening Funding of State Key Laboratory for Remote Sensing ScienceNational High-tech Research and Development Program (863 Program) (No. 2007AA120205, 2007AA120306)
文摘The thermal infrared channel (IRS4) of HJ-1B satellite obtains view zenith angles (VZA) up to ±33°. The view angle should be taken into account when retrieving land surface temperature (LST) from IRS4 data. This study aims at improving the mono-window algorithm for retrieving LST from IRS4 data. Based on atmospheric radiative transfer simulations,a model for correcting the VZA effects on atmospheric transmittance is proposed. In addition,a generalized model for calculating the effective mean atmospheric temperature is developed. Validation with the simulated dataset based on standard atmospheric profiles reveals that the improved mono-window algorithm for IRS4 obtains high accuracy for LST retrieval,with the mean absolute error (MAE) and root mean square error (RMSE) being 1.0 K and 1.1 K,respectively. Numerical experiment with the radiosonde profile acquired in Beijing in winter demonstrates that the improved mono-window algorithm exhibits excellent ability for LST retrieval,with MAE and RMSE being 0.6 K and 0.6 K,respectively. Further application in Qinghai Lake and comparison with the Moderate-Resolution Imaging Spectroradiometer (MODIS) LST product suggest that the improved mono-window algorithm is applicable and feasible in actual conditions.
文摘Taxonomy is generated to effectively organize and access large volume of data. A taxonomy is a way of representing concepts that exist in data. It needs to continuously evolve to reflect changes in data. Existing automatic taxonomy generation techniques do not handle the evolution of data; therefore, the generated taxonomies do not truly represent the data. The evolution of data can be handled by either regenerating taxonomy from scratch, or allowing taxonomy to incrementally evolve whenever changes occur in the data. The former approach is not economical in terms of time and resources. A taxonomy incremental evolution(TIE) algorithm, as proposed, is a novel attempt to handle the data that evolve in time. It serves as a layer over an existing clustering-based taxonomy generation technique and allows an existing taxonomy to incrementally evolve. The algorithm was evaluated in research articles selected from the computing domain. It was found that the taxonomy using the algorithm that evolved with data needed considerably shorter time, and had better quality per unit time as compared to the taxonomy regenerated from scratch.