期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于策略模式数据粗化算法类库设计与实现 被引量:2
1
作者 马媛 赵智宝 《软件导刊》 2009年第12期44-46,共3页
针对油藏数据粗化的应用,以及三维数据体的数据结构,研究了数据粗化算法,结合基于策略的对象行为模式,定义了一系列算法,把它们独立封装起来,并使其可以相互替换。实现了算法的独立性,具有重用性和扩展性。
关键词 策略模式 环境 抽象策略类 具体策略 数据粗化算法类库
下载PDF
基于设计模式的遗传算法类库的框架模型
2
作者 王莉 汤灵愈 《科技创新导报》 2008年第3期7-8,共2页
随着对遗传算法研究和应用的不断深入,传统的基于问题的遗传算法开发方法已经变得过于僵硬。为此,在麻省理工学院的Matthew Wall开发的遗传算法类库GALib的基础上,提出了基于设计模式的遗传算法类库的框架模型。该模型将适配器模式,策... 随着对遗传算法研究和应用的不断深入,传统的基于问题的遗传算法开发方法已经变得过于僵硬。为此,在麻省理工学院的Matthew Wall开发的遗传算法类库GALib的基础上,提出了基于设计模式的遗传算法类库的框架模型。该模型将适配器模式,策略模式,模版方法模式和工厂方法模式应用到设计和开发之中,使整个类库的可复用性和可扩展性有了很大的提高。 展开更多
关键词 设计模式 遗传算法类库
下载PDF
设计模式在储层算法类库的应用
3
作者 王家华 赵智宝 《电脑知识与技术》 2010年第01X期733-735,共3页
介绍一种基于设计模式的储层算法类库中类间通信的框架模型,该框架模型将单件模式,观察者模式应用到设计和开发之中,使整个类库的可复用性和可扩展性有了很大的提高。
关键词 算法类库 单件模式 观察者模式 设计模式
下载PDF
某涡扇发动机最小油耗模式性能优化算法研究 被引量:2
4
作者 刘旭东 邓小宝 高扬 《计算机仿真》 CSCD 北大核心 2009年第12期74-77,共4页
针对发动机安全性、减少油耗、降低热应力问题,研究某型涡扇发动机非线性数学模型,在满足发动机各部件物理约束条件和推力相等的条件下,采用遗传算法就巡航状态下耗油率最低,对性能指标进行寻优,寻优过程用GAlib类库的遗传算法和涡扇发... 针对发动机安全性、减少油耗、降低热应力问题,研究某型涡扇发动机非线性数学模型,在满足发动机各部件物理约束条件和推力相等的条件下,采用遗传算法就巡航状态下耗油率最低,对性能指标进行寻优,寻优过程用GAlib类库的遗传算法和涡扇发动机非线性数学模型结合编程实现。在地面及空中巡航状态下分别进行仿真,在推力相等的条件下,地面巡航状态的耗油率在优化后比优化前降低了13.8%,空中巡航状态的耗油率在优化后比优化前降低了9.45%。研究表明:遗传算法适用于像涡扇发动机巡航状态性能寻优这样大规模、高度非线性及无解析表达式的性能优化。 展开更多
关键词 涡扇发动机 性能优化 遗传算法 遗传算法类库 最低油耗寻优模式
下载PDF
基于MFC+HALCON图像识别Mark圆的检测方法 被引量:5
5
作者 李泽峰 欧阳八生 《激光技术》 CAS CSCD 北大核心 2020年第3期358-363,共6页
为了解决传统印刷电路板(PCB)中定位标识圆(Mark圆)的检测精度和准确率不高的问题,采用曲线拟合及优化拟合算法改善Mark圆检测方式并进行了理论分析,通过使用微软基础类库嵌入标准的机器视觉算法包HALCON的方法搭建检测平台并进行了实... 为了解决传统印刷电路板(PCB)中定位标识圆(Mark圆)的检测精度和准确率不高的问题,采用曲线拟合及优化拟合算法改善Mark圆检测方式并进行了理论分析,通过使用微软基础类库嵌入标准的机器视觉算法包HALCON的方法搭建检测平台并进行了实验验证。结果表明,该方法检测成功率可达97%,检测精度在0.3pixel以下,检测时间小于100ms,解决了传统PCB中Mark圆检测精度不高的问题,同时大量测试数据显示,在图像发生平移、旋转、缩放的环境下,仍能保证较好的检测效果。该研究对实际PCB生产检测具有一定借鉴意义。 展开更多
关键词 图像处理 Mark检测 微软基础类库嵌入HALCON算法 曲线拟合 优化拟合 激光加工
下载PDF
DCAD:a Dual Clustering Algorithm for Distributed Spatial Databases 被引量:15
6
作者 ZHOU Jiaogen GUAN Jihong LI Pingxiang 《Geo-Spatial Information Science》 2007年第2期137-144,共8页
Spatial objects have two types of attributes: geometrical attributes and non-geometrical attributes, which belong to two different attribute domains (geometrical and non-geometrical domains). Although geometrically... Spatial objects have two types of attributes: geometrical attributes and non-geometrical attributes, which belong to two different attribute domains (geometrical and non-geometrical domains). Although geometrically scattered in a geometrical domain, spatial objects may be similar to each other in a non-geometrical domain. Most existing clustering algorithms group spatial datasets into different compact regions in a geometrical domain without considering the aspect of a non-geometrical domain. However, many application scenarios require clustering results in which a cluster has not only high proximity in a geometrical domain, but also high similarity in a non-geometrical domain. This means constraints are imposed on the clustering goal from both geometrical and non-geometrical domains simultaneously. Such a clustering problem is called dual clustering. As distributed clustering applications become more and more popular, it is necessary to tackle the dual clustering problem in distributed databases. The DCAD algorithm is proposed to solve this problem. DCAD consists of two levels of clustering: local clustering and global clustering. First, clustering is conducted at each local site with a local clustering algorithm, and the features of local clusters are extracted clustering is obtained based on those features fective and efficient. Second, local features from each site are sent to a central site where global Experiments on both artificial and real spatial datasets show that DCAD is effective and efficient. 展开更多
关键词 distributed clustering dual clustering distributed spatial database
下载PDF
KFL: a clustering algorithm for image database
7
作者 Xie Zongbo Feng Jiuchao 《High Technology Letters》 EI CAS 2012年第1期33-37,共5页
It is a fairly challenging issue to make image repositories easy to be searched and browsed. This depends on a technique--image clustering. Kernel-based clustering algorithm has been one of the most promising clusteri... It is a fairly challenging issue to make image repositories easy to be searched and browsed. This depends on a technique--image clustering. Kernel-based clustering algorithm has been one of the most promising clustering methods in the last few years, beeanse it can handle data with high dimensional complex structure. In this paper, a kernel fuzzy learning (KFL) algorithm is proposed, which takes advantages of the distance kernel trick and the gradient-based fuzzy clustering method to execute the image clustering automatically. Experimental results show that KFL is a more efficient method for image clustering in comparison with recent renorted alternative methods. 展开更多
关键词 kernel fuzzy learning (KFL) image clustering content-based image retrieval (CBIR)
下载PDF
Research on the Multimedia Data Mining and Classification Algorithm based on the Database Optimization Techniques
8
作者 Hu Xiu 《International Journal of Technology Management》 2015年第11期58-60,共3页
In this research article, we analyze the multimedia data mining and classification algorithm based on database optimization techniques. Of high performance application requirements of various kinds are springing up co... In this research article, we analyze the multimedia data mining and classification algorithm based on database optimization techniques. Of high performance application requirements of various kinds are springing up constantly makes parallel computer system structure is valued by more and more common but the corresponding software system development lags far behind the development of the hardware system, it is more obvious in the field of database technology application. Multimedia mining is different from the low level of computer multimedia processing technology and the former focuses on the extracted from huge multimedia collection mode which focused on specific features of understanding or extraction from a single multimedia objects. Our research provides new paradigm for the methodology which will be meaningful and necessary. 展开更多
关键词 Data Mining Classification Algorithm Database Optimization Multimedia Source.
下载PDF
A CLUSTERING ALGORITHM FOR MIXED NUMERIC AND CATEGORICAL DATA
9
作者 Ohn Mar San Van-Nam Huynh Yoshiteru Nakamori 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2003年第4期562-571,共10页
Most of the earlier work on clustering mainly focused on numeric data whoseinherent geometric properties can be exploited to naturally define distance functions between datapoints. However, data mining applications fr... Most of the earlier work on clustering mainly focused on numeric data whoseinherent geometric properties can be exploited to naturally define distance functions between datapoints. However, data mining applications frequently involve many datasets that also consists ofmixed numeric and categorical attributes. In this paper we present a clustering algorithm which isbased on the k-means algorithm. The algorithm clusters objects with numeric and categoricalattributes in a way similar to k-means. The object similarity measure is derived from both numericand categorical attributes. When applied to numeric data, the algorithm is identical to the k-means.The main result of this paper is to provide a method to update the 'cluster centers' of clusteringobjects described by mixed numeric and categorical attributes in the clustering process to minimizethe clustering cost function. The clustering performance of the algorithm is demonstrated with thetwo well known data sets, namely credit approval and abalone databases. 展开更多
关键词 cluster analysis numeric data categorical data k-means algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部