This paper presents an integrated methodology for the modelling and optimisation of precedence-constrained production sequencing and scheduling for multiple production lines based on Genetic Algorithms (GA). The pro...This paper presents an integrated methodology for the modelling and optimisation of precedence-constrained production sequencing and scheduling for multiple production lines based on Genetic Algorithms (GA). The problems in this class are NP-hard combinatorial problems, requiring a triple optimisation at the same time: allocation of resources to each line, production sequencing and production scheduling within each production line. They are ubiquitous to production and manufacturing environments. Due to nature of constraints, the length of solutions for the problem can be variable. To cope with this variability, new strategies for encoding chromosomes, crossover and mutation operations have been developed. Robustness of the proposed GA is demonstrated by a complex and realistic case study.展开更多
With further increase of the number of on-chip device, the bus structure has not met the requirements. In order to make better communication between each part, the chip designers need to explore a new structure to sol...With further increase of the number of on-chip device, the bus structure has not met the requirements. In order to make better communication between each part, the chip designers need to explore a new structure to solve the interconnection of on-chip device. The paper proposes a network-on-chip dynamic and adaptive algorithm which selects NoC platform with 2-dimension mesh as the carrier, incorporates communication energy consumption and delay into unified cost function and uses ant colony optimization to realize NOC map facing energy consumption and delay. The experiment indicates that compared with random map, single objective optimization can separately saves (30% - 47 %) and ( 20% - 39%) in communication energy consumption and execution time compared with random map, and joint objective optimization can further excavate the potential of time dimension in mapping scheme dominated by the energy.展开更多
文摘This paper presents an integrated methodology for the modelling and optimisation of precedence-constrained production sequencing and scheduling for multiple production lines based on Genetic Algorithms (GA). The problems in this class are NP-hard combinatorial problems, requiring a triple optimisation at the same time: allocation of resources to each line, production sequencing and production scheduling within each production line. They are ubiquitous to production and manufacturing environments. Due to nature of constraints, the length of solutions for the problem can be variable. To cope with this variability, new strategies for encoding chromosomes, crossover and mutation operations have been developed. Robustness of the proposed GA is demonstrated by a complex and realistic case study.
文摘With further increase of the number of on-chip device, the bus structure has not met the requirements. In order to make better communication between each part, the chip designers need to explore a new structure to solve the interconnection of on-chip device. The paper proposes a network-on-chip dynamic and adaptive algorithm which selects NoC platform with 2-dimension mesh as the carrier, incorporates communication energy consumption and delay into unified cost function and uses ant colony optimization to realize NOC map facing energy consumption and delay. The experiment indicates that compared with random map, single objective optimization can separately saves (30% - 47 %) and ( 20% - 39%) in communication energy consumption and execution time compared with random map, and joint objective optimization can further excavate the potential of time dimension in mapping scheme dominated by the energy.