In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv...In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.展开更多
This paper presents a powerful application of genetic algorithm (GA) for the minimization of the total harmonic current distortion (THCD) in high-power induction motors fed by voltage source inverters, based on an...This paper presents a powerful application of genetic algorithm (GA) for the minimization of the total harmonic current distortion (THCD) in high-power induction motors fed by voltage source inverters, based on an approximate harmonic model. That is, having defined a desired fundamental output voltage, optimal pulse patterns (switching angles) are determined to produce the fundamental output voltage while minimizing the THCD. The complete results for the two cases of three and five switching instants in the first quarter period of pulse width modulation (PWM) waveform are presented. Presence of harmonics in the stator excitation leads to a pulsing-torque component. Considering the fact that if the pulsing-torques are at low frequencies, they can cause troublesome speed fluctuations, shaft fatigue, and unsatisfactory performance in the feedback control system, the 5th, 7th, 1 lth, and 13th current harmonics (in the case of five switching angles) are constrained at some pre-specified values, to mitigate the detrimental effects of low-frequency harmonics. At the same time, the THCD is optimized while the required fundamental output voltage is maintained.展开更多
To optimize peaking operation when high proportion new energy accesses to power grid,evaluation indexes are proposed which simultaneously consider wind-solar complementation and source-load coupling.A typical wind-sol...To optimize peaking operation when high proportion new energy accesses to power grid,evaluation indexes are proposed which simultaneously consider wind-solar complementation and source-load coupling.A typical wind-solar power output scene model based on peaking demand is established which has anti-peaking characteristic.This model uses balancing scenes and key scenes with probability distribution based on improved Latin hypercube sampling(LHS)algorithm and scene reduction technology to illustrate the influence of wind-solar on peaking demand.Based on this,a peak shaving operation optimization model of high proportion new energy power generation is established.The various operating indexes after optimization in multi-scene peaking are calculated,and the ability of power grid peaking operation is compared whth that considering wind-solar complementation and source-load coupling.Finally,a case of high proportion new energy verifies the feasibility and validity of the proposed operation strategy.展开更多
To reduce resources consumption of parallel computation system, a static task scheduling opti- mization method based on hybrid genetic algorithm is proposed and validated, which can shorten the scheduling length of pa...To reduce resources consumption of parallel computation system, a static task scheduling opti- mization method based on hybrid genetic algorithm is proposed and validated, which can shorten the scheduling length of parallel tasks with precedence constraints. Firstly, the global optimal model and constraints are created to demonstrate the static task scheduling problem in heterogeneous distributed computing systems(HeDCSs). Secondly, the genetic population is coded with matrix and used to search the total available time span of the processors, and then the simulated annealing algorithm is introduced to improve the convergence speed and overcome the problem of easily falling into local minimum point, which exists in the traditional genetic algorithm. Finally, compared to other existed scheduling algorithms such as dynamic level scheduling ( DLS), heterogeneous earliest finish time (HEFr), and longest dynamic critical path( LDCP), the proposed approach does not merely de- crease tasks schedule length, but also achieves the maximal resource utilization of parallel computa- tion system by extensive experiments.展开更多
Task scheduling is one of the core steps to effectively exploit the capabilities of heterogeneous re-sources in the grid.This paper presents a new hybrid differential evolution(HDE)algorithm for findingan optimal or n...Task scheduling is one of the core steps to effectively exploit the capabilities of heterogeneous re-sources in the grid.This paper presents a new hybrid differential evolution(HDE)algorithm for findingan optimal or near-optimal schedule within reasonable time.The encoding scheme and the adaptation ofclassical differential evolution algorithm for dealing with discrete variables are discussed.A simple but ef-fective local search is incorporated into differential evolution to stress exploitation.The performance of theproposed HDE algorithm is showed by being compared with a genetic algorithm(GA)on a known staticbenchmark for the problem.Experimental results indicate that the proposed algorithm has better perfor-mance than GA in terms of both solution quality and computational time,and thus it can be used to de-sign efficient dynamic schedulers in batch mode for real grid systems.展开更多
A newly developed heuristic global optimization algorithm, called gravitational search algorithm (GSA), was introduced and applied for simultaneously coordinated designing of power system stabilizer (PSS) and thyr...A newly developed heuristic global optimization algorithm, called gravitational search algorithm (GSA), was introduced and applied for simultaneously coordinated designing of power system stabilizer (PSS) and thyristor controlled series capacitor (TCSC) as a damping controller in the multi-machine power system. The coordinated design problem of PSS and TCSC controllers over a wide range of loading conditions is formulated as a multi-objective optimization problem which is the aggregation of two objectives related to damping ratio and damping factor. By minimizing the objective function with oscillation, the characteristics between areas are contained and hence the interactions among the PSS and TCSC controller under transient conditions are modified. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on a weakly connected power system subjected to different disturbances, loading conditions and system parameter variations. The cigenvalues analysis and nonlinear simulation results demonstrate the high performance of proposed controllers which is able to provide efficient damping of low frequency oscillations.展开更多
In order to solve the problem that the existing data scheduling algorithm cannot make full use of neighbors' bandwidth resources when allocating data request among several senders in the multisender based P2P stre...In order to solve the problem that the existing data scheduling algorithm cannot make full use of neighbors' bandwidth resources when allocating data request among several senders in the multisender based P2P streaming system,a peer priority based scheduling algorithm is proposed.The algorithm calculates neighbors' priority based on peers' historical service evaluation as well as how many wanted data that the neighbor has.The data request allocated to each neighbor is adjusted dynamically according to the priority when scheduling.Peers with high priority are preferred to allocate more data request.Experiment shows the algorithm can make full use of neighbors' bandwidth resources to transmit data to reduce server pressure effectively and improve system scalability.展开更多
In the rescheduling on a single machine,a set of original jobs has already been scheduled to minimize some cost objective,when a new set of jobs arrives and creates a disruption.The decision maker needs to insert the ...In the rescheduling on a single machine,a set of original jobs has already been scheduled to minimize some cost objective,when a new set of jobs arrives and creates a disruption.The decision maker needs to insert the new jobs into the existing schedule without excessively disrupting it.In this paper,we consider hierarchical optimization between the scheduling cost of all the jobs and the degree of this disruption.For every problem,we provide either a polynomial time algorithm or an intractable result.展开更多
To make the on-board computer system more dependable and real-time in a satellite, an algorithm of the fault-tolerant scheduling in the on-board computer system with high priority recovery is proposed in this paper. T...To make the on-board computer system more dependable and real-time in a satellite, an algorithm of the fault-tolerant scheduling in the on-board computer system with high priority recovery is proposed in this paper. This algorithm can schedule the on-board fault-tolerant tasks in real time. Due to the use of dependability cost, the overhead of scheduling the fault-tolerant tasks can be reduced. The mechanism of the high priority recovery will improve the response to recovery tasks. The fault-tolerant scheduling model is presented simulation results validate the correctness and feasibility of the proposed algorithm.展开更多
This paper presents an integrated methodology for the modelling and optimisation of precedence-constrained production sequencing and scheduling for multiple production lines based on Genetic Algorithms (GA). The pro...This paper presents an integrated methodology for the modelling and optimisation of precedence-constrained production sequencing and scheduling for multiple production lines based on Genetic Algorithms (GA). The problems in this class are NP-hard combinatorial problems, requiring a triple optimisation at the same time: allocation of resources to each line, production sequencing and production scheduling within each production line. They are ubiquitous to production and manufacturing environments. Due to nature of constraints, the length of solutions for the problem can be variable. To cope with this variability, new strategies for encoding chromosomes, crossover and mutation operations have been developed. Robustness of the proposed GA is demonstrated by a complex and realistic case study.展开更多
Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multiv...Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multivariable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified 10 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control.展开更多
The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tu...The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tube metal temperature, process time of each feedstock, and flow rate. A modified group search optimizer is proposed to deal with the optimization problem. Double fitness values are defined for every group. First, the factor of penalty function should be changed adaptively by the ratio of feasible and general solutions. Second, the "excellent" infeasible solution should be retained to guide the search. Some benchmark functions are used to evaluate the new algorithm. Finally, the proposed algorithm is used to optimize the scheduling process of cracking furnace feedstock. And the optimizing result is obtained.展开更多
文摘In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.
文摘This paper presents a powerful application of genetic algorithm (GA) for the minimization of the total harmonic current distortion (THCD) in high-power induction motors fed by voltage source inverters, based on an approximate harmonic model. That is, having defined a desired fundamental output voltage, optimal pulse patterns (switching angles) are determined to produce the fundamental output voltage while minimizing the THCD. The complete results for the two cases of three and five switching instants in the first quarter period of pulse width modulation (PWM) waveform are presented. Presence of harmonics in the stator excitation leads to a pulsing-torque component. Considering the fact that if the pulsing-torques are at low frequencies, they can cause troublesome speed fluctuations, shaft fatigue, and unsatisfactory performance in the feedback control system, the 5th, 7th, 1 lth, and 13th current harmonics (in the case of five switching angles) are constrained at some pre-specified values, to mitigate the detrimental effects of low-frequency harmonics. At the same time, the THCD is optimized while the required fundamental output voltage is maintained.
基金Youth Science and Technology Fund Project of Gansu Province(No.18JR3RA011)Major Projects in Gansu Province(No.17ZD2GA010)+1 种基金Science and Technology Projects Funding of State Grid Corporation(No.522727160001)Science and Technology Projects of State Grid Gansu Electric Power Company(No.52272716000K)
文摘To optimize peaking operation when high proportion new energy accesses to power grid,evaluation indexes are proposed which simultaneously consider wind-solar complementation and source-load coupling.A typical wind-solar power output scene model based on peaking demand is established which has anti-peaking characteristic.This model uses balancing scenes and key scenes with probability distribution based on improved Latin hypercube sampling(LHS)algorithm and scene reduction technology to illustrate the influence of wind-solar on peaking demand.Based on this,a peak shaving operation optimization model of high proportion new energy power generation is established.The various operating indexes after optimization in multi-scene peaking are calculated,and the ability of power grid peaking operation is compared whth that considering wind-solar complementation and source-load coupling.Finally,a case of high proportion new energy verifies the feasibility and validity of the proposed operation strategy.
基金Supported by the National Natural Science Foundation of China(No.61401496)
文摘To reduce resources consumption of parallel computation system, a static task scheduling opti- mization method based on hybrid genetic algorithm is proposed and validated, which can shorten the scheduling length of parallel tasks with precedence constraints. Firstly, the global optimal model and constraints are created to demonstrate the static task scheduling problem in heterogeneous distributed computing systems(HeDCSs). Secondly, the genetic population is coded with matrix and used to search the total available time span of the processors, and then the simulated annealing algorithm is introduced to improve the convergence speed and overcome the problem of easily falling into local minimum point, which exists in the traditional genetic algorithm. Finally, compared to other existed scheduling algorithms such as dynamic level scheduling ( DLS), heterogeneous earliest finish time (HEFr), and longest dynamic critical path( LDCP), the proposed approach does not merely de- crease tasks schedule length, but also achieves the maximal resource utilization of parallel computa- tion system by extensive experiments.
基金supported by the National Basic Research Program of China(No.2007CB316502)the National Natural Science Foundation of China(No.60534060)
文摘Task scheduling is one of the core steps to effectively exploit the capabilities of heterogeneous re-sources in the grid.This paper presents a new hybrid differential evolution(HDE)algorithm for findingan optimal or near-optimal schedule within reasonable time.The encoding scheme and the adaptation ofclassical differential evolution algorithm for dealing with discrete variables are discussed.A simple but ef-fective local search is incorporated into differential evolution to stress exploitation.The performance of theproposed HDE algorithm is showed by being compared with a genetic algorithm(GA)on a known staticbenchmark for the problem.Experimental results indicate that the proposed algorithm has better perfor-mance than GA in terms of both solution quality and computational time,and thus it can be used to de-sign efficient dynamic schedulers in batch mode for real grid systems.
基金Project(UKM-DLP-2011-059) supported by the National University of Malaysia
文摘A newly developed heuristic global optimization algorithm, called gravitational search algorithm (GSA), was introduced and applied for simultaneously coordinated designing of power system stabilizer (PSS) and thyristor controlled series capacitor (TCSC) as a damping controller in the multi-machine power system. The coordinated design problem of PSS and TCSC controllers over a wide range of loading conditions is formulated as a multi-objective optimization problem which is the aggregation of two objectives related to damping ratio and damping factor. By minimizing the objective function with oscillation, the characteristics between areas are contained and hence the interactions among the PSS and TCSC controller under transient conditions are modified. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on a weakly connected power system subjected to different disturbances, loading conditions and system parameter variations. The cigenvalues analysis and nonlinear simulation results demonstrate the high performance of proposed controllers which is able to provide efficient damping of low frequency oscillations.
基金Supported by the National High Technology Research and Development Program of China(No.2009AA01A339,2008AA01A317)the National Natural Science Foundation of China for Distinguished Young Scholars(No.60903218F0208)the Science and Technology Support Plan of China(No.2008BAH28B04)
文摘In order to solve the problem that the existing data scheduling algorithm cannot make full use of neighbors' bandwidth resources when allocating data request among several senders in the multisender based P2P streaming system,a peer priority based scheduling algorithm is proposed.The algorithm calculates neighbors' priority based on peers' historical service evaluation as well as how many wanted data that the neighbor has.The data request allocated to each neighbor is adjusted dynamically according to the priority when scheduling.Peers with high priority are preferred to allocate more data request.Experiment shows the algorithm can make full use of neighbors' bandwidth resources to transmit data to reduce server pressure effectively and improve system scalability.
基金Supported by the NSFC(10671183)Supported by the Science Foundation of Henan University of Technology(07XJC002)+1 种基金Supported by the NSF of the Education Department of Henan Province(2008A11004)Supported by the NSF of Henan Province(082300410190)
文摘In the rescheduling on a single machine,a set of original jobs has already been scheduled to minimize some cost objective,when a new set of jobs arrives and creates a disruption.The decision maker needs to insert the new jobs into the existing schedule without excessively disrupting it.In this paper,we consider hierarchical optimization between the scheduling cost of all the jobs and the degree of this disruption.For every problem,we provide either a polynomial time algorithm or an intractable result.
文摘To make the on-board computer system more dependable and real-time in a satellite, an algorithm of the fault-tolerant scheduling in the on-board computer system with high priority recovery is proposed in this paper. This algorithm can schedule the on-board fault-tolerant tasks in real time. Due to the use of dependability cost, the overhead of scheduling the fault-tolerant tasks can be reduced. The mechanism of the high priority recovery will improve the response to recovery tasks. The fault-tolerant scheduling model is presented simulation results validate the correctness and feasibility of the proposed algorithm.
文摘This paper presents an integrated methodology for the modelling and optimisation of precedence-constrained production sequencing and scheduling for multiple production lines based on Genetic Algorithms (GA). The problems in this class are NP-hard combinatorial problems, requiring a triple optimisation at the same time: allocation of resources to each line, production sequencing and production scheduling within each production line. They are ubiquitous to production and manufacturing environments. Due to nature of constraints, the length of solutions for the problem can be variable. To cope with this variability, new strategies for encoding chromosomes, crossover and mutation operations have been developed. Robustness of the proposed GA is demonstrated by a complex and realistic case study.
基金Supported by Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education of China
文摘Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multivariable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified 10 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(Key Program:U1162202),the National Natural Science Foundation of China(61174118)+2 种基金the National High-Tech Research and Development Program of China(2012AA040307)Shanghai Key Technologies R&D program(12dz1125100)Shanghai Leading Academic Discipline Project(B504)
文摘The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tube metal temperature, process time of each feedstock, and flow rate. A modified group search optimizer is proposed to deal with the optimization problem. Double fitness values are defined for every group. First, the factor of penalty function should be changed adaptively by the ratio of feasible and general solutions. Second, the "excellent" infeasible solution should be retained to guide the search. Some benchmark functions are used to evaluate the new algorithm. Finally, the proposed algorithm is used to optimize the scheduling process of cracking furnace feedstock. And the optimizing result is obtained.