期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于KL-散度的电力用电数据自动脱敏算法研究
1
作者 龙致远 黄莹 王柳乃 《微型电脑应用》 2024年第4期162-165,共4页
电力数据中包含一些隐私数据,一旦泄漏,就会对个人隐私安全造成隐患。为保证电力数据的安全性,提出了基于KL-散度设计电力用电数据自动脱敏算法。基于KL-散度算法建立敏感数据过滤模型,计算不同变量数据的KL距离,得到其相似性指标,对用... 电力数据中包含一些隐私数据,一旦泄漏,就会对个人隐私安全造成隐患。为保证电力数据的安全性,提出了基于KL-散度设计电力用电数据自动脱敏算法。基于KL-散度算法建立敏感数据过滤模型,计算不同变量数据的KL距离,得到其相似性指标,对用户项目评分进行平滑处理,将具备相似性的敏感数据分成不同的批次。敏感数据去身份化处理,将数据匿名转换,计算用户真实路径被泄露的概率。设计数据自动脱敏算法,分别计算概念化数据、元组信息以及信息流的损失程度,以此判定脱敏后的数据是否可用。检验脱敏前后数据一致性,三类电力用电数据的变化率分别为0.43%、0.14%和0.11%,远远小于标准值。且算法在运行过程中单位时间处理数据量和平均延迟时间也较为理想,可见该脱敏算法具备实用性。 展开更多
关键词 KL-散度 电力信息 用电数据 自动脱敏算法 一致性判断 算法运行效率
下载PDF
HBFTrans2: A Maple Package to Construct Hirota Bilinear Form for Nonlinear Equations
2
作者 杨旭尔 阮航宇 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第5期747-752,共6页
An improved algorithm for symbolic computation of Hirota bilinear form of nonlinear equations by a logarithm transformation is presented. The improved algorithm is more efficient by using the property of Hirota-D oper... An improved algorithm for symbolic computation of Hirota bilinear form of nonlinear equations by a logarithm transformation is presented. The improved algorithm is more efficient by using the property of Hirota-D operator. The software package HBFTrans2 is written in Maple and its running efficiency is tested by a variety of soliton equations. 展开更多
关键词 Hirota bilinear form nonlinear equation symbolic computation
下载PDF
Research on Parallel K-Medoids algorithm based on MapReduce
3
作者 Xianli QIN 《International Journal of Technology Management》 2015年第1期26-28,共3页
In order to solve the bottleneck problem of the traditional K-Medoids clustering algorithm facing to deal with massive data information at the time of memory capacity and processing speed of CPU, the paper proposed a ... In order to solve the bottleneck problem of the traditional K-Medoids clustering algorithm facing to deal with massive data information at the time of memory capacity and processing speed of CPU, the paper proposed a parallel algorithm MapReduce programming model based on the research of K-Medoids algorithm. This algorithm increase the computation granularity and reduces the communication cost ratio based on the MapReduce model. The experimental results show that the improved parallel algorithm compared with other algorithms, speedup and operation efficiency is greatly enhanced. 展开更多
关键词 K-Medoids MAPREDUCE Parallel computing HADOOP
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部