Many image inverse problems are ill-posed for no unique solutions. Most of them have incommensurable or mixed-type objectives. In this study, a multi-objective optimization framework is introduced to model such ill-po...Many image inverse problems are ill-posed for no unique solutions. Most of them have incommensurable or mixed-type objectives. In this study, a multi-objective optimization framework is introduced to model such ill-posed inverse problems. The conflicting objectives are designed according to the properties of ill-posedness and certain techniques. Multi-objective evolutionary algorithms have capability to optimize multiple objectives simultaneously and obtain a set of trade-off solutions. For that reason, we use multi-objective evolutionary algorithms to keep the trade-off between these objectives for image ill-posed problems. Two case studies of sparse reconstruction and change detection are imple- mented. In the case study of sparse reconstruction, the measurement error term and the sparsity term are optimized by multi-objective evolutionary algorithms, which aims at balancing the trade-off between enforcing sparsity and reducing measurement error. In the case study of image change detection, two conflicting objectives are constructed to keep the trade-off between robustness to noise and preserving the image details. Experimental results of the two case studies confirm the multi-objective optimization framework for ill-posed inverse problems in image processing is effective.展开更多
Intelligent connected vehicles(ICVs) are believed to change people's life in the near future by making the transportation safer,cleaner and more comfortable. Although many prototypes of ICVs have been developed to...Intelligent connected vehicles(ICVs) are believed to change people's life in the near future by making the transportation safer,cleaner and more comfortable. Although many prototypes of ICVs have been developed to prove the concept of autonomous driving and the feasibility of improving traffic efficiency, there still exists a significant gap before achieving mass production of high-level ICVs. The objective of this study is to present an overview of both the state of the art and future perspectives of key technologies that are needed for future ICVs. It is a challenging task to review all related works and predict their future perspectives, especially for such a complex and interdisciplinary area of research. This article is organized to overview the ICV key technologies by answering three questions: what are the milestones in the history of ICVs; what are the electronic components needed for building an ICV platform; and what are the essential algorithms to enable intelligent driving? To answer the first question, the article has reviewed the history and the development milestones of ICVs. For the second question, the recent technology advances in electrical/electronic architecture, sensors, and actuators are presented. For the third question, the article focuses on the algorithms in decision making, as the perception and control algorithm are covered in the development of sensors and actuators. To achieve correct decision-making, there exist two different approaches: the principle-based approach and data-driven approach. The advantages and limitations of both approaches are explained and analyzed. Currently automotive engineers are concerned more with the vehicle platform technology, whereas the academic researchers prefer to focus on theoretical algorithms. However, only by incorporating elements from both worlds can we accelerate the production of high-level ICVs.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant no. 61273317 and 61422209), the National Top Youth Talents Program of China, the Specialized Research Fund for the Doctoral Program of Higher Education (Grant no. 20130203110011) and the Fundamental Research Fund for the Central Universities (Grant no. K5051202053).
文摘Many image inverse problems are ill-posed for no unique solutions. Most of them have incommensurable or mixed-type objectives. In this study, a multi-objective optimization framework is introduced to model such ill-posed inverse problems. The conflicting objectives are designed according to the properties of ill-posedness and certain techniques. Multi-objective evolutionary algorithms have capability to optimize multiple objectives simultaneously and obtain a set of trade-off solutions. For that reason, we use multi-objective evolutionary algorithms to keep the trade-off between these objectives for image ill-posed problems. Two case studies of sparse reconstruction and change detection are imple- mented. In the case study of sparse reconstruction, the measurement error term and the sparsity term are optimized by multi-objective evolutionary algorithms, which aims at balancing the trade-off between enforcing sparsity and reducing measurement error. In the case study of image change detection, two conflicting objectives are constructed to keep the trade-off between robustness to noise and preserving the image details. Experimental results of the two case studies confirm the multi-objective optimization framework for ill-posed inverse problems in image processing is effective.
基金supported by the International Science and Technology Cooperation Program of China(Grant No.2016YFE0102200)the National Natural Science Foundation of China(Grant No.61773234)+1 种基金the National Key R&D Program of China(Grant No.2108YFB0105004)and Beijing Municipal Science and Technology Commission(Grant Nos.D171100005117001&D171100005117002)
文摘Intelligent connected vehicles(ICVs) are believed to change people's life in the near future by making the transportation safer,cleaner and more comfortable. Although many prototypes of ICVs have been developed to prove the concept of autonomous driving and the feasibility of improving traffic efficiency, there still exists a significant gap before achieving mass production of high-level ICVs. The objective of this study is to present an overview of both the state of the art and future perspectives of key technologies that are needed for future ICVs. It is a challenging task to review all related works and predict their future perspectives, especially for such a complex and interdisciplinary area of research. This article is organized to overview the ICV key technologies by answering three questions: what are the milestones in the history of ICVs; what are the electronic components needed for building an ICV platform; and what are the essential algorithms to enable intelligent driving? To answer the first question, the article has reviewed the history and the development milestones of ICVs. For the second question, the recent technology advances in electrical/electronic architecture, sensors, and actuators are presented. For the third question, the article focuses on the algorithms in decision making, as the perception and control algorithm are covered in the development of sensors and actuators. To achieve correct decision-making, there exist two different approaches: the principle-based approach and data-driven approach. The advantages and limitations of both approaches are explained and analyzed. Currently automotive engineers are concerned more with the vehicle platform technology, whereas the academic researchers prefer to focus on theoretical algorithms. However, only by incorporating elements from both worlds can we accelerate the production of high-level ICVs.