The altimeter normalized radar cross section(NRCS) has been used to retrieve the sea surface wind speed for decades, and more than a dozen of wind speed retrieval algorithms have been proposed. Despite the continuing ...The altimeter normalized radar cross section(NRCS) has been used to retrieve the sea surface wind speed for decades, and more than a dozen of wind speed retrieval algorithms have been proposed. Despite the continuing efforts to improve the wind speed measurements, a bias dependence on wave state persists in all wind algorithms. On the basis of recent evidence that short waves are essentially modulated by local winds and much less affected by wave state, we proposed a physics-based approach to retrieve the wind speed from the dual-frequency difference in terms of the mean square slope of short waves. A collocated dataset of coincident altimeter/buoy measurements were used to develop and validate the approach. Validation against buoy measurements indicates that the approach is almost unbiased and has an overall root mean square error of 1.24 m s-1, which is 5.3% lower than the single-parameter algorithm in operational use(Witter and Chelton, 1991) and 2.4% lower than another dual-frequency approach(Chen et al., 2002). Furthermore, the results indicate that the new approach significantly improves the wave-dependent bias compared to the single-parameter algorithm. The capacity of altimeter to retrieve sea surface wind speed appears to be limited for the case of winds below 3 m s-1. The validity of the approach at high winds needs to be further examined in the future study.展开更多
Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To addr...Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To address this problem, the computational fluid dynamics software FLUENT was applied to establish three-dimensional model of the centrifugal fan. The numeral model was verified by comparing simulation data to experimental data. The pressure centrifugal fan and the speed changes in distribution in centrifugal fan was simulated by computational fluid dynamics soft-ware FLUENT. The simulation results show that the gas flow velocity in the impeller increases with impeller radius increase. Static pressure gradually increases when gas from the fan access is imported through fan impeller leaving fans.展开更多
WindSat/Coriolis is the first satellite-borne polarimetric microwave radiometer, which aims to improve the potential of polarimetric microwave radiometry for measuring sea surface wind vectors from space. In this pape...WindSat/Coriolis is the first satellite-borne polarimetric microwave radiometer, which aims to improve the potential of polarimetric microwave radiometry for measuring sea surface wind vectors from space. In this paper, a wind vector retrieval algorithm based on a novel and simple forward model was developed for WindSat. The retrieval algorithm of sea surface wind speed was developed using multiple linear regression based on the simulation dataset of the novel forward model. Sea surface wind directions that minimize the difference between simulated and measured values of the third and fourth Stokes parameters were found using maximum likelihood estimation, by which a group of ambiguous wind directions was obtained. A median filter was then used to remove ambiguity of wind direction. Evaluated with sea surface wind speed and direction data from the U.S. National Data Buoy Center (NDBC), root mean square errors are 1.2 rn/s and 30~ for retrieved wind speed and wind direction, respectively. The evaluation results suggest that the simple forward model and the retrieval algorithm are practicable for near-real time applications, without reducing accuracy.展开更多
Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multiv...Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multivariable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified 10 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control.展开更多
A distribution grid is generally characterized by a high R/X (resistance/reactance) ratio and it is radial in nature. By design, a distribution grid system is not an active network, and it is normally designed in su...A distribution grid is generally characterized by a high R/X (resistance/reactance) ratio and it is radial in nature. By design, a distribution grid system is not an active network, and it is normally designed in such a way that power flows from transmission system via distribution system to consumers. But in a situation when wind turbines are connected to the distribution grid, the power source will change from one source to two sources, in this case, network is said to be active. This may probably have an impact on the distribution grid to whenever the wind turbine is connected. The best way to know the impact of wind turbine on the distribution grid in question is by carrying out load flow analysis on that system with and without the connection of wind turbines. Two major fundamental calculations: the steady-state voltage variation at the PCC (point of common coupling) and the calculation of short-circuit power of the grid system at the POC (point of connection) are necessary before carrying out the load flow study on the distribution grid. This paper, therefore, considers these pre-load flow calculations that are necessary before carrying out load flow study on the test distribution grid. These calculations are carded out on a test distribution system.展开更多
The paper reports an experiment in China on individual investors' risk perception. The main findings are similar with the results in Matthias (2000), but the absolute value of correlation coefficients between risk ...The paper reports an experiment in China on individual investors' risk perception. The main findings are similar with the results in Matthias (2000), but the absolute value of correlation coefficients between risk measures and risk ratings are higher.展开更多
基金supported by the National High Technology Research and Development Program of China (2013 AA09A505)
文摘The altimeter normalized radar cross section(NRCS) has been used to retrieve the sea surface wind speed for decades, and more than a dozen of wind speed retrieval algorithms have been proposed. Despite the continuing efforts to improve the wind speed measurements, a bias dependence on wave state persists in all wind algorithms. On the basis of recent evidence that short waves are essentially modulated by local winds and much less affected by wave state, we proposed a physics-based approach to retrieve the wind speed from the dual-frequency difference in terms of the mean square slope of short waves. A collocated dataset of coincident altimeter/buoy measurements were used to develop and validate the approach. Validation against buoy measurements indicates that the approach is almost unbiased and has an overall root mean square error of 1.24 m s-1, which is 5.3% lower than the single-parameter algorithm in operational use(Witter and Chelton, 1991) and 2.4% lower than another dual-frequency approach(Chen et al., 2002). Furthermore, the results indicate that the new approach significantly improves the wave-dependent bias compared to the single-parameter algorithm. The capacity of altimeter to retrieve sea surface wind speed appears to be limited for the case of winds below 3 m s-1. The validity of the approach at high winds needs to be further examined in the future study.
文摘Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To address this problem, the computational fluid dynamics software FLUENT was applied to establish three-dimensional model of the centrifugal fan. The numeral model was verified by comparing simulation data to experimental data. The pressure centrifugal fan and the speed changes in distribution in centrifugal fan was simulated by computational fluid dynamics soft-ware FLUENT. The simulation results show that the gas flow velocity in the impeller increases with impeller radius increase. Static pressure gradually increases when gas from the fan access is imported through fan impeller leaving fans.
文摘WindSat/Coriolis is the first satellite-borne polarimetric microwave radiometer, which aims to improve the potential of polarimetric microwave radiometry for measuring sea surface wind vectors from space. In this paper, a wind vector retrieval algorithm based on a novel and simple forward model was developed for WindSat. The retrieval algorithm of sea surface wind speed was developed using multiple linear regression based on the simulation dataset of the novel forward model. Sea surface wind directions that minimize the difference between simulated and measured values of the third and fourth Stokes parameters were found using maximum likelihood estimation, by which a group of ambiguous wind directions was obtained. A median filter was then used to remove ambiguity of wind direction. Evaluated with sea surface wind speed and direction data from the U.S. National Data Buoy Center (NDBC), root mean square errors are 1.2 rn/s and 30~ for retrieved wind speed and wind direction, respectively. The evaluation results suggest that the simple forward model and the retrieval algorithm are practicable for near-real time applications, without reducing accuracy.
基金Supported by Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education of China
文摘Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multivariable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified 10 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control.
文摘A distribution grid is generally characterized by a high R/X (resistance/reactance) ratio and it is radial in nature. By design, a distribution grid system is not an active network, and it is normally designed in such a way that power flows from transmission system via distribution system to consumers. But in a situation when wind turbines are connected to the distribution grid, the power source will change from one source to two sources, in this case, network is said to be active. This may probably have an impact on the distribution grid to whenever the wind turbine is connected. The best way to know the impact of wind turbine on the distribution grid in question is by carrying out load flow analysis on that system with and without the connection of wind turbines. Two major fundamental calculations: the steady-state voltage variation at the PCC (point of common coupling) and the calculation of short-circuit power of the grid system at the POC (point of connection) are necessary before carrying out the load flow study on the distribution grid. This paper, therefore, considers these pre-load flow calculations that are necessary before carrying out load flow study on the test distribution grid. These calculations are carded out on a test distribution system.
基金This research is supported by National Natural Science Foundation of China(70571042)
文摘The paper reports an experiment in China on individual investors' risk perception. The main findings are similar with the results in Matthias (2000), but the absolute value of correlation coefficients between risk measures and risk ratings are higher.