The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone can lead to signif...The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone can lead to significant cost reduction by optimizing design. This paper presents a plasticity model that can be applied to numerically simulate riser-soil interaction and evaluate dynamic responses and the fatigue damage of a steel catenary riser in the touchdown zone. Utilizing the model, numerous riser-soil elements are attached to the steel catenary riser finite elements, in which each simulates local foundation restraint along the riser touchdown zone. The riser-soil interaction plasticity model accounts for the behavior within an allowable combined loading surface. The model will be represented in this paper, allowing simple numerical implementation. More importantly, it can be incorporated within the structural analysis of a steel catenary riser with the finite element method. The applicability of the model is interpreted theoretically and the results are shown through application to an offshore 8.625 steel catenary riser example. The fatigue analysis results of the liner elastic riser-soil model are also shown. According to the comparison results of the two models, the fatigue life analysis results of the plasticity framework are reasonable and the horizontal effects of the riser-soil interaction can be included.展开更多
This paper describes the dynamic characteristics of pipelines laid through alluvial valleys. We assume that the alluvial valley has a semi-cylindrical cross-section. The ground motion of alluvial valley under harmonic...This paper describes the dynamic characteristics of pipelines laid through alluvial valleys. We assume that the alluvial valley has a semi-cylindrical cross-section. The ground motion of alluvial valley under harmonic seismic SH waves is carried out, and the pipeline-soil dynamic interaction is taken into account. Though simple, the model may qualitatively explain the earthquake damages of pipelines laid through an alluvial river valley.展开更多
The expected rise in temperature and decreased precipitation owing to climate change and unabated anthropogenic activities add complexity and uncertainty to agro-industry. The impact of soil nutrient imbalance, misman...The expected rise in temperature and decreased precipitation owing to climate change and unabated anthropogenic activities add complexity and uncertainty to agro-industry. The impact of soil nutrient imbalance, mismanaged use of chemicals, high temperature, flood or drought, soil salinity, and heavy metal pollutions, with regard to food security, is increasingly being explored worldwide. This review describes the role of soil-plant-microbe interactions along with organic manure in solving stressed agriculture problems. Beneficial microbes associated with plants are known to stimulate plant growth and enhance plant resistance to biotic (diseases) and abiotic (salinity, drought, pollutions, etc.) stresses. The plant growth-promoting rhizobemteria (PGPR) and mycorrhizae, a key component of soil microbiota, could play vital roles in the maintenance of plant fitness and soil health under stressed environments. The application of organic manure as a soil conditioner to stressed soils along with suitable microbial strains could further enhance the plant-microbe associations and increase the crop yield. A combination of plant, stress-tolerant microbe, and organic amendment represents the tripartite association to offer a favourable environment to the proliferation of beneficial rhizosphere microbes that in turn enhance the plant growth performance in disturbed agro-ecosystem. Agriculture land use patterns with the proper exploitation of plant-microbe associations, with compatible beneficial microbial agents, could be one of the most effective strategies in the management of the concerned agriculture lands owing to climate change resilience. However, the association of such microbes with plants for stressed agriculture management still needs to be explored in greater depth.展开更多
文摘The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone can lead to significant cost reduction by optimizing design. This paper presents a plasticity model that can be applied to numerically simulate riser-soil interaction and evaluate dynamic responses and the fatigue damage of a steel catenary riser in the touchdown zone. Utilizing the model, numerous riser-soil elements are attached to the steel catenary riser finite elements, in which each simulates local foundation restraint along the riser touchdown zone. The riser-soil interaction plasticity model accounts for the behavior within an allowable combined loading surface. The model will be represented in this paper, allowing simple numerical implementation. More importantly, it can be incorporated within the structural analysis of a steel catenary riser with the finite element method. The applicability of the model is interpreted theoretically and the results are shown through application to an offshore 8.625 steel catenary riser example. The fatigue analysis results of the liner elastic riser-soil model are also shown. According to the comparison results of the two models, the fatigue life analysis results of the plasticity framework are reasonable and the horizontal effects of the riser-soil interaction can be included.
文摘This paper describes the dynamic characteristics of pipelines laid through alluvial valleys. We assume that the alluvial valley has a semi-cylindrical cross-section. The ground motion of alluvial valley under harmonic seismic SH waves is carried out, and the pipeline-soil dynamic interaction is taken into account. Though simple, the model may qualitatively explain the earthquake damages of pipelines laid through an alluvial river valley.
文摘The expected rise in temperature and decreased precipitation owing to climate change and unabated anthropogenic activities add complexity and uncertainty to agro-industry. The impact of soil nutrient imbalance, mismanaged use of chemicals, high temperature, flood or drought, soil salinity, and heavy metal pollutions, with regard to food security, is increasingly being explored worldwide. This review describes the role of soil-plant-microbe interactions along with organic manure in solving stressed agriculture problems. Beneficial microbes associated with plants are known to stimulate plant growth and enhance plant resistance to biotic (diseases) and abiotic (salinity, drought, pollutions, etc.) stresses. The plant growth-promoting rhizobemteria (PGPR) and mycorrhizae, a key component of soil microbiota, could play vital roles in the maintenance of plant fitness and soil health under stressed environments. The application of organic manure as a soil conditioner to stressed soils along with suitable microbial strains could further enhance the plant-microbe associations and increase the crop yield. A combination of plant, stress-tolerant microbe, and organic amendment represents the tripartite association to offer a favourable environment to the proliferation of beneficial rhizosphere microbes that in turn enhance the plant growth performance in disturbed agro-ecosystem. Agriculture land use patterns with the proper exploitation of plant-microbe associations, with compatible beneficial microbial agents, could be one of the most effective strategies in the management of the concerned agriculture lands owing to climate change resilience. However, the association of such microbes with plants for stressed agriculture management still needs to be explored in greater depth.