In this paper, we report a method to change the threshold voltage of SnO2 and In2O3 nanowire transistors by Ga^+ ion irradiation. Unlike the results in earlier reports, the threshold voltages of SnO2 and In2O3 nanowi...In this paper, we report a method to change the threshold voltage of SnO2 and In2O3 nanowire transistors by Ga^+ ion irradiation. Unlike the results in earlier reports, the threshold voltages of SnO2 and In2O3 nanowire field-effect transistors (FETs) shift in the negative gate voltage direction after Ga^+ ion irradiation. Smaller threshold voltages, achieved by Ga^+ ion irradiation, are required for high-performance and low-voltage operation. The threshold voltage shift can be attributed to the degradation of surface defects caused by Ga+ ion irradiation. After irradiation, the current on/off ratio declines slightly, but is still close to -106. The results indicate that Ga^+ ion beam irradiation plays a vital role in improving the performance of oxide nanowire FETs.展开更多
文摘In this paper, we report a method to change the threshold voltage of SnO2 and In2O3 nanowire transistors by Ga^+ ion irradiation. Unlike the results in earlier reports, the threshold voltages of SnO2 and In2O3 nanowire field-effect transistors (FETs) shift in the negative gate voltage direction after Ga^+ ion irradiation. Smaller threshold voltages, achieved by Ga^+ ion irradiation, are required for high-performance and low-voltage operation. The threshold voltage shift can be attributed to the degradation of surface defects caused by Ga+ ion irradiation. After irradiation, the current on/off ratio declines slightly, but is still close to -106. The results indicate that Ga^+ ion beam irradiation plays a vital role in improving the performance of oxide nanowire FETs.