This paper presents the characteristics of a double helix capacitance sensor for measurement of the liquid holdup in horizontal oil–water two-phase flow. The finite element method is used to calculate the sensitivity...This paper presents the characteristics of a double helix capacitance sensor for measurement of the liquid holdup in horizontal oil–water two-phase flow. The finite element method is used to calculate the sensitivity field of the sensor in a pipe with 20 mm inner diameter and the effect of sensor geometry on the distribution of sensitivity field is presented. Then, a horizontal oil–water two-phase flow experiment is carried out to measure the response of the double helix capacitance sensor, in which a novel method is proposed to calibrate the liquid holdup based on three pairs of parallel-wire capacitance probes. The performance of the sensor is analyzed in terms of the flow structures detected by mini-conductance array probes.展开更多
A model for gas–liquid annular and stratified flow through a horizontal pipe is investigated, using the two-phase hydrokinetics theory. Taking into consideration the flow factors including the void fraction, the fric...A model for gas–liquid annular and stratified flow through a horizontal pipe is investigated, using the two-phase hydrokinetics theory. Taking into consideration the flow factors including the void fraction, the friction between the two phases and the entrainment in the gas core, the one-dimensional momentum equation for gas has been solved. The differential pressure of the wet gas between the two tapings in the straight pipe has been modeled in the pressure range of 0.1–0.8 MPa. In addition a more objective iteration approach to determine the local void fraction is proposed. Compared with the experimental data, more than 83% deviation of the test data distributed evenly within the band of ± 10%. Since the model is less dependent on the specific empirical apparatus and data,it forms the foundation for further establishing a flow measurement model of wet gas which will produce fewer biases in results when it is extrapolated.展开更多
Results of experimental research of the mixing process of coaxial flows in a pipe with swirled peripheral jet are presented in this paper. Distribution of temperature and concentration of gases on the axis and wall of...Results of experimental research of the mixing process of coaxial flows in a pipe with swirled peripheral jet are presented in this paper. Distribution of temperature and concentration of gases on the axis and wall of the channel under the influence of such factors as the regime flow, ratio of density of flows and swirl degree of the peripheral jet are studied. Research of temperature, swirl angle, circulation in cross sections along with the channel have shown that their distributions have the jet-like character and are described by known dependences for the layer of mixture.展开更多
基金Supported by the National Natural Science Foundation of China(50974095,41174109,61104148)the National Science and Technology Major Projects(2011ZX05020-006)
文摘This paper presents the characteristics of a double helix capacitance sensor for measurement of the liquid holdup in horizontal oil–water two-phase flow. The finite element method is used to calculate the sensitivity field of the sensor in a pipe with 20 mm inner diameter and the effect of sensor geometry on the distribution of sensitivity field is presented. Then, a horizontal oil–water two-phase flow experiment is carried out to measure the response of the double helix capacitance sensor, in which a novel method is proposed to calibrate the liquid holdup based on three pairs of parallel-wire capacitance probes. The performance of the sensor is analyzed in terms of the flow structures detected by mini-conductance array probes.
基金Supported by the National Nature Science Foundation of China(61603207 and61571252)Tsinghua University Shenzhen Graduate School Grant(050100001)
文摘A model for gas–liquid annular and stratified flow through a horizontal pipe is investigated, using the two-phase hydrokinetics theory. Taking into consideration the flow factors including the void fraction, the friction between the two phases and the entrainment in the gas core, the one-dimensional momentum equation for gas has been solved. The differential pressure of the wet gas between the two tapings in the straight pipe has been modeled in the pressure range of 0.1–0.8 MPa. In addition a more objective iteration approach to determine the local void fraction is proposed. Compared with the experimental data, more than 83% deviation of the test data distributed evenly within the band of ± 10%. Since the model is less dependent on the specific empirical apparatus and data,it forms the foundation for further establishing a flow measurement model of wet gas which will produce fewer biases in results when it is extrapolated.
文摘Results of experimental research of the mixing process of coaxial flows in a pipe with swirled peripheral jet are presented in this paper. Distribution of temperature and concentration of gases on the axis and wall of the channel under the influence of such factors as the regime flow, ratio of density of flows and swirl degree of the peripheral jet are studied. Research of temperature, swirl angle, circulation in cross sections along with the channel have shown that their distributions have the jet-like character and are described by known dependences for the layer of mixture.