期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ATC3在管制员模拟培训中的应用分析 被引量:5
1
作者 张晓燕 马江涛 《中国民航大学学报》 CAS 2013年第3期27-30,共4页
民航的快速发展对管制员的数量和质量都提出了很高的要求,但管制模拟机设备的不足限制了民航院校的管制员培训与培养。通过详细研究管制模拟软件ATC3,并与目前使用的管制模拟机进行对比分析,探讨其创新性及优缺点,进而研究在管制员模拟... 民航的快速发展对管制员的数量和质量都提出了很高的要求,但管制模拟机设备的不足限制了民航院校的管制员培训与培养。通过详细研究管制模拟软件ATC3,并与目前使用的管制模拟机进行对比分析,探讨其创新性及优缺点,进而研究在管制员模拟机培训中的可应用性。同时也针对该软件的缺点提出了一些优化建议,以使该软件很好地应用在管制员模拟培训中,提高管制培训的质量,加快管制员培训的步伐,满足中国民航发展的迫切需求。 展开更多
关键词 空管 管制员培训 管制模拟 ATC3 管制场景
下载PDF
Recognition of Similar Weather Scenarios in Terminal Area Based on Contrastive Learning 被引量:2
2
作者 CHEN Haiyan LIU Zhenya +1 位作者 ZHOU Yi YUAN Ligang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第4期425-433,共9页
In order to improve the recognition accuracy of similar weather scenarios(SWSs)in terminal area,a recognition model for SWS based on contrastive learning(SWS-CL)is proposed.Firstly,a data augmentation method is design... In order to improve the recognition accuracy of similar weather scenarios(SWSs)in terminal area,a recognition model for SWS based on contrastive learning(SWS-CL)is proposed.Firstly,a data augmentation method is designed to improve the number and quality of weather scenarios samples according to the characteristics of convective weather images.Secondly,in the pre-trained recognition model of SWS-CL,a loss function is formulated to minimize the distance between the anchor and positive samples,and maximize the distance between the anchor and the negative samples in the latent space.Finally,the pre-trained SWS-CL model is fine-tuned with labeled samples to improve the recognition accuracy of SWS.The comparative experiments on the weather images of Guangzhou terminal area show that the proposed data augmentation method can effectively improve the quality of weather image dataset,and the proposed SWS-CL model can achieve satisfactory recognition accuracy.It is also verified that the fine-tuned SWS-CL model has obvious advantages in datasets with sparse labels. 展开更多
关键词 air traffic control terminal area similar weather scenarios(SWSs) image recognition contrastive learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部