This paper presents the setup and performance of a drop tower experiment which investigates the behavior of liquid during self-driven capillary transport between two parallel perforated plates under microgravity. With...This paper presents the setup and performance of a drop tower experiment which investigates the behavior of liquid during self-driven capillary transport between two parallel perforated plates under microgravity. With the onset ofmicrogravity the liquid rises between the two parallel plates as a result of capillary pressure. Eight different sets of plates are tested in this study and the free surface height and the volume of transported liquid is subsequently analyzed. The plate sets differ in geometric properties of their perforations, distance, and width. In each set the perforations of both plates are identical and have a diameter of a few millimeters. The capillary rise velocity is influenced by the perforation diameter and the area porosity of the plates. As could be expected, the capillary transport capability increases with decreasing plate porosity.展开更多
A research on the heat transfer performance of kerosene flowing in a vertical upward tube at supercritical pressure is presented.In the experiments,insights are offered on the effects of the factors such as mass flux,...A research on the heat transfer performance of kerosene flowing in a vertical upward tube at supercritical pressure is presented.In the experiments,insights are offered on the effects of the factors such as mass flux,heat flux,and pressure.It is found that increasing mass flux reduces the wall temperature and separates the experimental section into three different parts,while increasing working pressure deteriorates heat transfer.The extended corresponding-state principle can be used for evaluating density and transport properties of kerosene,including its viscosity and thermal conductivity,at different temperatures and pressures under supercritical conditions.For getting the heat capacity,a Soave–Redlich–Kwong(SRK)equation of state is used.The correlation for predicting heat transfer of kerosene at supercritical pressure is established and shows good agreement with the experimental data.展开更多
文摘This paper presents the setup and performance of a drop tower experiment which investigates the behavior of liquid during self-driven capillary transport between two parallel perforated plates under microgravity. With the onset ofmicrogravity the liquid rises between the two parallel plates as a result of capillary pressure. Eight different sets of plates are tested in this study and the free surface height and the volume of transported liquid is subsequently analyzed. The plate sets differ in geometric properties of their perforations, distance, and width. In each set the perforations of both plates are identical and have a diameter of a few millimeters. The capillary rise velocity is influenced by the perforation diameter and the area porosity of the plates. As could be expected, the capillary transport capability increases with decreasing plate porosity.
基金Supported by the National Science Foundation of Zhejiang Province(Z13E060001)the National Natural Science Foundation of China(52176091)+1 种基金the National Science Foundation of Shandong Province(ZR2012EEQ017)the PhD Program Foundation of Ministry of Education of China(20120101110102)
文摘A research on the heat transfer performance of kerosene flowing in a vertical upward tube at supercritical pressure is presented.In the experiments,insights are offered on the effects of the factors such as mass flux,heat flux,and pressure.It is found that increasing mass flux reduces the wall temperature and separates the experimental section into three different parts,while increasing working pressure deteriorates heat transfer.The extended corresponding-state principle can be used for evaluating density and transport properties of kerosene,including its viscosity and thermal conductivity,at different temperatures and pressures under supercritical conditions.For getting the heat capacity,a Soave–Redlich–Kwong(SRK)equation of state is used.The correlation for predicting heat transfer of kerosene at supercritical pressure is established and shows good agreement with the experimental data.