The aim of the research is to determine the capillary conductivity coefficient as a characteristic material moisture parameter of the building materials using a non-destructive method while using microwave radiation. ...The aim of the research is to determine the capillary conductivity coefficient as a characteristic material moisture parameter of the building materials using a non-destructive method while using microwave radiation. Available documents are usually focused on the description of diffusion and similar works are based on the difference of partial pressure [I]. Publication will introduce experimental measurements the transport of humidity in porous material in a non-stationary state. As a result may be obtaining of data for formulation of humidity profiles with the help of experimentally built measuring apparatus without influence of human factor. Aim is verification of mentioned method of measurement for description of moisture parameters building materials applicable for practice. Complication in the determination of moisture parameters is various porous textures and the remains effect of condensation and transport influence of liquid moisture by diffusion in porous material. At the present time does not exist for standard use computational theory to description of transport of dampness in building materials. Moisture in porous medium is transported by the help of the capillary forces. The liquid moisture gradient is an indicator of moving of liquid moisture in a porous material through capillaries. This phenomenon is called capillary conductivity of moisture. Purpose presents measurement of material specimen for formulation of capillary conductivity coefficient and its dependence on moisture. The specimen of porous material is subjected to an isothermal moisture intake process. The transient moisture distribution in the specimen during the process is determined, at different stages of the process. Methodology of data scanning with the help of microwave radiation and data processing is processed for numerical computation on the basis known physics laws. The outputs of measurements can be used for evaluation of physical properties of building materials.展开更多
In this paper, the heat transfer enhancement in a solar parabolic trough receiver tube with porous insert and non-uniform heat flux condition was investigated. A new optimization method, which couples genetic algorith...In this paper, the heat transfer enhancement in a solar parabolic trough receiver tube with porous insert and non-uniform heat flux condition was investigated. A new optimization method, which couples genetic algorithm(GA) and computational fluid dynamics(CFD) based on Socket communication, was proposed to optimize the configuration of porous insert. After the acquisition of the optimal porous inserts, some performance evaluation criterions such as synergy angle, entransy dissipation and exergy loss were introduced to discuss the heat transfer performance of the enhanced receiver tubes(ERTs) with optimal and referenced porous inserts. The results showed that, for a large range of properties of porous insert(including porosity and thermal conductivity) and Reynolds number, the heat-transfer performance of ERT with porous insert optimized by GA is always higher than that of the referenced ERTs. Better heat-transfer performance can further improve the solar-to-thermal energy conversion efficiency and mechanical property of the solar parabolic trough receiver. When some porous materials with high thermal conductivity are adopted, ERT can simultaneously obtain perfect thermal and thermo-hydraulic performance by using the same optimized porous insert, which cannot be achieved by using the referenced porous insert. In the view of those introduced evaluation criterions, using the optimized porous insert can obtain better synergy performance and lesser irreversibility of heat transfer than using the referenced porous insert. Entransy dissipation per unit energy transferred and exergy loss rate have equivalent effects on the evaluation of irreversibility of heat transfer process. These evaluation criterions can be used as optimization goals for enhancing the comprehensive performance of the solar parabolic trough receiver.展开更多
To enhance electrochemical performance of li- thium or sodium-ion batteries (LIBs or NIBs), active materials are usually filled in porous conductive particles to produce anode composites. However, it is still challe...To enhance electrochemical performance of li- thium or sodium-ion batteries (LIBs or NIBs), active materials are usually filled in porous conductive particles to produce anode composites. However, it is still challenging to achieve high performance anode composites with high specific capa- city, excellent rate performance, high initial Coulombic effi- ciency (ICE) and long cycle life. Based on these requirements, we design and fabricate activated carbon-coated carbon na- notubes (AC@CNT) with hierarchical structures containing micro- and meso-pores. A new structure of phosphorus/car- bon composite (P@AC@CNT) is prepared by confining red P in porous carbon through a vaporization-condensation-con- version method. The micro-pores are filled with P, while the meso-pores remain unoccupied, and the pore openings on the particle surface are sealed by P. Due to the unique structure of P@AC@CNT, it displays a high specific capacity of 1674 mA h g-i at 0.2 C, ultrahigh ICE of 92.2%, excellent rate per- formance of 1116 mA h g-i at 6 C, and significantly enhanced cycle stability for LIBs. The application of P@AC@CNT in NIBs is further explored. This method for the fabrication of the special composites with improved electrochemical per- formance can be extended to other energy storage applica- tions.展开更多
文摘The aim of the research is to determine the capillary conductivity coefficient as a characteristic material moisture parameter of the building materials using a non-destructive method while using microwave radiation. Available documents are usually focused on the description of diffusion and similar works are based on the difference of partial pressure [I]. Publication will introduce experimental measurements the transport of humidity in porous material in a non-stationary state. As a result may be obtaining of data for formulation of humidity profiles with the help of experimentally built measuring apparatus without influence of human factor. Aim is verification of mentioned method of measurement for description of moisture parameters building materials applicable for practice. Complication in the determination of moisture parameters is various porous textures and the remains effect of condensation and transport influence of liquid moisture by diffusion in porous material. At the present time does not exist for standard use computational theory to description of transport of dampness in building materials. Moisture in porous medium is transported by the help of the capillary forces. The liquid moisture gradient is an indicator of moving of liquid moisture in a porous material through capillaries. This phenomenon is called capillary conductivity of moisture. Purpose presents measurement of material specimen for formulation of capillary conductivity coefficient and its dependence on moisture. The specimen of porous material is subjected to an isothermal moisture intake process. The transient moisture distribution in the specimen during the process is determined, at different stages of the process. Methodology of data scanning with the help of microwave radiation and data processing is processed for numerical computation on the basis known physics laws. The outputs of measurements can be used for evaluation of physical properties of building materials.
基金supported by the Key Project of National Natural Science Foundation of China(Grant No.51436007)the Major Program of the National Natural Science Foundation of China(Grant No.51590902)
文摘In this paper, the heat transfer enhancement in a solar parabolic trough receiver tube with porous insert and non-uniform heat flux condition was investigated. A new optimization method, which couples genetic algorithm(GA) and computational fluid dynamics(CFD) based on Socket communication, was proposed to optimize the configuration of porous insert. After the acquisition of the optimal porous inserts, some performance evaluation criterions such as synergy angle, entransy dissipation and exergy loss were introduced to discuss the heat transfer performance of the enhanced receiver tubes(ERTs) with optimal and referenced porous inserts. The results showed that, for a large range of properties of porous insert(including porosity and thermal conductivity) and Reynolds number, the heat-transfer performance of ERT with porous insert optimized by GA is always higher than that of the referenced ERTs. Better heat-transfer performance can further improve the solar-to-thermal energy conversion efficiency and mechanical property of the solar parabolic trough receiver. When some porous materials with high thermal conductivity are adopted, ERT can simultaneously obtain perfect thermal and thermo-hydraulic performance by using the same optimized porous insert, which cannot be achieved by using the referenced porous insert. In the view of those introduced evaluation criterions, using the optimized porous insert can obtain better synergy performance and lesser irreversibility of heat transfer than using the referenced porous insert. Entransy dissipation per unit energy transferred and exergy loss rate have equivalent effects on the evaluation of irreversibility of heat transfer process. These evaluation criterions can be used as optimization goals for enhancing the comprehensive performance of the solar parabolic trough receiver.
基金financially supported by the National Natural Science Foundation of China (91648109)the National Key Research and Development Program of China (2017YFB0307001)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions333 project of Jiangsu Province
文摘To enhance electrochemical performance of li- thium or sodium-ion batteries (LIBs or NIBs), active materials are usually filled in porous conductive particles to produce anode composites. However, it is still challenging to achieve high performance anode composites with high specific capa- city, excellent rate performance, high initial Coulombic effi- ciency (ICE) and long cycle life. Based on these requirements, we design and fabricate activated carbon-coated carbon na- notubes (AC@CNT) with hierarchical structures containing micro- and meso-pores. A new structure of phosphorus/car- bon composite (P@AC@CNT) is prepared by confining red P in porous carbon through a vaporization-condensation-con- version method. The micro-pores are filled with P, while the meso-pores remain unoccupied, and the pore openings on the particle surface are sealed by P. Due to the unique structure of P@AC@CNT, it displays a high specific capacity of 1674 mA h g-i at 0.2 C, ultrahigh ICE of 92.2%, excellent rate per- formance of 1116 mA h g-i at 6 C, and significantly enhanced cycle stability for LIBs. The application of P@AC@CNT in NIBs is further explored. This method for the fabrication of the special composites with improved electrochemical per- formance can be extended to other energy storage applica- tions.