Low voltage operating organic devices and circuits have been realized using atomic layer deposition deposited aluminum oxide thin film as dielectric layer. The dielectric film has per unit area capacitance of 165 nF/c...Low voltage operating organic devices and circuits have been realized using atomic layer deposition deposited aluminum oxide thin film as dielectric layer. The dielectric film has per unit area capacitance of 165 nF/cm2 and leakage current of 1 nA/cm2 at 1 MV/cm. The devices and circuits use the small-molecule hydrocarbon pentacene as the active semiconductor material. Transistors,inverters,and ring oscillators with operating voltage lower than 5 V were obtained. The mobility of organic field-effect transistors was extracted to be 0.16 cm2/Vs in saturation range,the threshold voltage is 0.3 V,and the on/off current ratio is larger than 105. The gain of inverters is estimated to be 12 at -5 V supply voltage,and the propagation delay is 0.25 ms per stage in 5-stage ring oscillators.展开更多
We explore 10-nm wide Si nanowire (SiNW) field-effect transistors (FETs) for logic applications, via the fabrication and testing of SiNW-based ring oscillators. We report on SiNW surface treatments and dielectric ...We explore 10-nm wide Si nanowire (SiNW) field-effect transistors (FETs) for logic applications, via the fabrication and testing of SiNW-based ring oscillators. We report on SiNW surface treatments and dielectric annealing, for producing SiNW FETs that exhibit high performance in terms of large on/off-state current ratio (-10s), low drain-induced barrier lowering (-30 mV) and low subthreshold swing (-80 mV/decade). The performance of inverter and ring-oscillator circuits fabricated from these nanowire FETs are also explored. The inverter demonstrates the highest voltage gain (-148) reported for a SiNW-based NOT gate, and the ring oscillator exhibits near rail-to-rail oscillation centered at 13.4 MHz. The static and dynamic characteristics of these NW devices indicate that these SiNW-based FET circuits are excellent candidates for various high-performance nanoelectronic applications.展开更多
基金supported by the National Basic Research Program of China ("973" Project)(Grant Nos.2009CB320302,2011CB808404)the Na-tional Natural Science Foundation of China (Grant Nos.60676001,60676008)
文摘Low voltage operating organic devices and circuits have been realized using atomic layer deposition deposited aluminum oxide thin film as dielectric layer. The dielectric film has per unit area capacitance of 165 nF/cm2 and leakage current of 1 nA/cm2 at 1 MV/cm. The devices and circuits use the small-molecule hydrocarbon pentacene as the active semiconductor material. Transistors,inverters,and ring oscillators with operating voltage lower than 5 V were obtained. The mobility of organic field-effect transistors was extracted to be 0.16 cm2/Vs in saturation range,the threshold voltage is 0.3 V,and the on/off current ratio is larger than 105. The gain of inverters is estimated to be 12 at -5 V supply voltage,and the propagation delay is 0.25 ms per stage in 5-stage ring oscillators.
基金The authors acknowledge H. Ahmad and Y. -S. Shin for graphics assistance. This work was funded by the National Science Foundation under Grant CCF-0541461 and the Department of Energy (DE-FG02-04ER46175). D. Tham gratefully acknowledges support by the KAUST Scholar Award.
文摘We explore 10-nm wide Si nanowire (SiNW) field-effect transistors (FETs) for logic applications, via the fabrication and testing of SiNW-based ring oscillators. We report on SiNW surface treatments and dielectric annealing, for producing SiNW FETs that exhibit high performance in terms of large on/off-state current ratio (-10s), low drain-induced barrier lowering (-30 mV) and low subthreshold swing (-80 mV/decade). The performance of inverter and ring-oscillator circuits fabricated from these nanowire FETs are also explored. The inverter demonstrates the highest voltage gain (-148) reported for a SiNW-based NOT gate, and the ring oscillator exhibits near rail-to-rail oscillation centered at 13.4 MHz. The static and dynamic characteristics of these NW devices indicate that these SiNW-based FET circuits are excellent candidates for various high-performance nanoelectronic applications.