Urbanization is the dominant form of land-use change in terms of impacts on water quality, hydrology, physical proper- ties of watersheds and their nonpoint source (NPS) pollution po- tential at present. Urbanization ...Urbanization is the dominant form of land-use change in terms of impacts on water quality, hydrology, physical proper- ties of watersheds and their nonpoint source (NPS) pollution po- tential at present. Urbanization has changed the source, process and sink of urban NPS pollution, especially raised the pollution load of urban runoff NPS in receiving water. Urban runoff pollu- tion is a hot spot of research on NPS. This paper analyzed type, source and harm of the NPS pollutants of urban runoff and its influence on the receiving water. Through estimating NPS pollu- tion load of urban runoff and summarizing the law and character- istics of urban runoff NPS systemically, study on management and control of urban runoff NPS pollution was focused on the applica- tion of BMPs (best management practices). It is a fresh method- ology that management and control on NPS pollution from urban surface runoff was analyzed by methods of landscape ecology, environmental economics and environmental management. The paper provided a scientific reference for mitigating urban water environment pressure and an effective method for management and control of NPS pollution from urban surface runoff..展开更多
The turning motion of a tracked pipeline-robot implemented by skid steering is a nonholonomic dynamic problem with intrinsic nonlinearity, to which the classical control method is inappropriate and cannot be applied. ...The turning motion of a tracked pipeline-robot implemented by skid steering is a nonholonomic dynamic problem with intrinsic nonlinearity, to which the classical control method is inappropriate and cannot be applied. This paper presents a novel path tracking control method based on hierarchical fuzzy structure. The controller consists of three sub-level low dimensional fuzzy control systems: fuzzy supervisory control, fuzzy steering and fuzzy velocity control. As a result, establishing the bases of rules for the fuzzy control becomes feasible and simplified, and the related controller can be adapted to complicated ground and environment. Using this method, the number of fuzzy controt rules is greatly decreased so that the curse of dimensionality causing the multivariable problem does not occur. Simulation and experimental results validate the effectiveness of the proposed method with satisfied performance on path tracking. Autonomous navigation of the caterpillar-inspired pipeline-robot is also implemented based on the sensor feedbacks.展开更多
基金Key Program of Natural Science Foundation of China(No. 40576024).
文摘Urbanization is the dominant form of land-use change in terms of impacts on water quality, hydrology, physical proper- ties of watersheds and their nonpoint source (NPS) pollution po- tential at present. Urbanization has changed the source, process and sink of urban NPS pollution, especially raised the pollution load of urban runoff NPS in receiving water. Urban runoff pollu- tion is a hot spot of research on NPS. This paper analyzed type, source and harm of the NPS pollutants of urban runoff and its influence on the receiving water. Through estimating NPS pollu- tion load of urban runoff and summarizing the law and character- istics of urban runoff NPS systemically, study on management and control of urban runoff NPS pollution was focused on the applica- tion of BMPs (best management practices). It is a fresh method- ology that management and control on NPS pollution from urban surface runoff was analyzed by methods of landscape ecology, environmental economics and environmental management. The paper provided a scientific reference for mitigating urban water environment pressure and an effective method for management and control of NPS pollution from urban surface runoff..
基金Supported by the National Science Foundation of China ( No. 60935001 ) and New Century Excellent Talents in University of Chinese Ministry of Education (NCET-06-0398).
文摘The turning motion of a tracked pipeline-robot implemented by skid steering is a nonholonomic dynamic problem with intrinsic nonlinearity, to which the classical control method is inappropriate and cannot be applied. This paper presents a novel path tracking control method based on hierarchical fuzzy structure. The controller consists of three sub-level low dimensional fuzzy control systems: fuzzy supervisory control, fuzzy steering and fuzzy velocity control. As a result, establishing the bases of rules for the fuzzy control becomes feasible and simplified, and the related controller can be adapted to complicated ground and environment. Using this method, the number of fuzzy controt rules is greatly decreased so that the curse of dimensionality causing the multivariable problem does not occur. Simulation and experimental results validate the effectiveness of the proposed method with satisfied performance on path tracking. Autonomous navigation of the caterpillar-inspired pipeline-robot is also implemented based on the sensor feedbacks.