Considering the maximum elastic limitation of the used material with newly advanced technology,the study focuses on optimization of a mortar barrel structure by thinning the wall to reduce the weight.Firstly,static an...Considering the maximum elastic limitation of the used material with newly advanced technology,the study focuses on optimization of a mortar barrel structure by thinning the wall to reduce the weight.Firstly,static analysis of barrel structure parameters is done based on finite element analysis(FEA)method and 3Dsolid model of the barrel is established based on Unigraphics NX(UG).Secondly,the 3Dsolid model is simplified and transplanted to ANSYS for barrel wall pressure calculation.Thus,the change curves of the stress exerted on the barrel wall at different locations perpendicular to the axial direction with wall thinning are drawn.By analyzing all possible optimization schemes,the optimal design that enables the barrel to have higher bearing capacity is got.The optimized barrel structure is verified by means of fluid-solid coupling dynamic response analysis.The results show that the static analysis results are closer to real stress conditions than dynamic analysis results.Finally,the barrel weight is reduced by 13%after simulation optimization and the light weight design of the barrel is effective and reliable.展开更多
Application of nanofluids in heat pipes usually presents satisfactory experimental results regarding a thermal resistance reduction of the heat pipe.However,the existing computational studies connecting heat pipes and...Application of nanofluids in heat pipes usually presents satisfactory experimental results regarding a thermal resistance reduction of the heat pipe.However,the existing computational studies connecting heat pipes and nanofluids lack a deeper discussion regarding the validity of the models currently used for representing the behaviour of a nanofluid in a heat pipe,particularly for unusual base fluids and nanoparticles such as carbon nanotubes or ethylene glycol.Thus,this comparative study presents the results of a set of computational simulations using pre-established equations for modelling a nanofluid in a heat pipe with experimental data from the literature.The results show agreement with the expected behaviour qualitatively and the presented maximum variations between 1.5% and 23.9% in comparison to the experimentally measured average temperatures.Also,the experimentally obtained temperature distribution of a heat pipe could not be reached numerically only with the use of adequate thermal properties,indicating that the boiling phenomenon is more complex than the current model used for computational simulations.Moreover,the existence of an optimal particle volume fraction for using nanofluids in this application could be observed by combining different properties models.展开更多
The paper is to review the clinical and pathophysiologic differences between of nonerosive reflux disease (NERD) and reflux esophagitis (RE), and to propose a treatment strategy for NERD, especially for patients in As...The paper is to review the clinical and pathophysiologic differences between of nonerosive reflux disease (NERD) and reflux esophagitis (RE), and to propose a treatment strategy for NERD, especially for patients in Asia. A Medline search was performed regarding the clinical and pathophysiologic differences between NERD and RE, and treatment of NERD and RE. The characteristics of NERD patients in Asia are as follows: (1) high proportion of female patients, (2) low frequency of hiatal hernia, (3) high frequency of H pylori infection, (4) severe glandular atrophy of the gastric mucosa, and (5) frequent resistance to proton pump inhibitor (PPI) therapy. In Asian NERD patients, exposure of the esophagus to acid is not increased, and esophageal motility is normal. These characteristics are similar to those of patients in Western countries. Our recommended first-choice treatment is administration of PPI in combination with a prokinetic agent. However, at present, because there is limited evidence regarding effective treatments for NERD, it is best to try several different treatment strategies to find the best treatment for each patient.展开更多
In this study, we examined the expression of inducible nitric oxide s ynthase (iNOS) and vascular endothelial growth factor (VEGF) by immunohistoc hemi cal staining in 76 tissue sections collected from hepatocellula...In this study, we examined the expression of inducible nitric oxide s ynthase (iNOS) and vascular endothelial growth factor (VEGF) by immunohistoc hemi cal staining in 76 tissue sections collected from hepatocellular carcinoma (HCC) patients undergoing hepatectomy. Microvascular density (MVD) was determined by counting endothelial cells immunostained using anti-CD34 antibody. We performe d DNA-flow cytometric analyses to elucidate the impact of iNOS and VEGF expressi o n on the cell cycle of HCC. Most of the HCC cells that invaded stroma were mark edly immunostained by iNOS antibody. The iNOS stain intensity of the liver tissu e close to the tumor edge was stronger than that of HCC tissue, and the stronges t was the hepatocytes closer to the tumor tissue. However, iNOS expression in 10 normal hepatic samples was undetectable. VEGF positive expression ratio was 84. 8% in iNOS positive expression cases, and the ratio was 35.3% in negative cases. There was significant correlation (P=0.000) between iNOS and VEGF expressi on. Moreover, iNOS expression was significantly associated with bcl-2 and MVD, but w ithout p53 expression. DNA-flow cytometric analyses showed that combined expres s ion of iNOS and VEGF had significant impact on the cell cycle in HCC. PI (Proli ferating Index) and SPF (S-phase fraction) in the combined positive expression o f iNOS and VEGF group was significantly higher than that in the combined negativ e group. The present findings suggested that iNOS expression was significantly a ssociated with angiogenesis, bcl-2 and cell proliferation of HCC.展开更多
Characteristics of R22 and its new alternative refrigerant R200 flowing through adiabatic capillary tubes are investigated based on the homogeneous model. Extensive flow variables along tube length such as pressure, t...Characteristics of R22 and its new alternative refrigerant R200 flowing through adiabatic capillary tubes are investigated based on the homogeneous model. Extensive flow variables along tube length such as pressure, temperature, viscosity, velocity. Reynolds number, friction factor and vapor quality etc are compared between the two fluids under the same operating condition. Two cases are considered, namely, either the same tube length or the same mass flow rate as inlet condition. The results show that the mass flow rate in the capillary tube of R290 is 40% lower than that of R22 due to the differences of physical properties between the two fluids. Further. a parametric analysis is performed and it appears that effects of geometric and thermodynamic parameters on mass flow rate of R290 are weaker than that of R22. When the condensing temperature is increased from 40℃ to 50℃ C. the mass flow rate for R22 is increased by 16%. while the increasing rate for R290 is 13%.展开更多
The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determine...The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determined by publications. The turbulent flow in the piping elbow is simulated with large eddy simulation (LES). Following this, a hybrid method of combining LES and Lighthill's acoustic analogy theory is used to simulate the hydrodynamic noise and sound sources are solved as volume sources in code Actran. In addition, the flow-induced vibration of the piping elbow is investigated based on a fluid-structure interaction (FSI) code. The LES results indicate that the range of vortex zone in the elbow without the guide vane is larger than the case with the guide vane, and the guide vane is effective in reducing flow-induced noise and vibration in the 90° piping elbow at different Reynolds numbers.展开更多
Primary central nervous system lymphoma(PCNSL) is a rare disorder that, in 95% of cases, represents diffuse large B-cell lymphoma. As such, making an accurate diagnosis is important. At present, stereotactic-guided bi...Primary central nervous system lymphoma(PCNSL) is a rare disorder that, in 95% of cases, represents diffuse large B-cell lymphoma. As such, making an accurate diagnosis is important. At present, stereotactic-guided biopsy is a recognized method of choice for tissue analysis. However, the diagnostic work-up for high-risk patients is determined by their performance status. Here,we report a case of PCNSL in a high-risk patient, for whom diagnosis was established by cerebrospinal fluid cytology and flow cytometry, which significantly shortened a diagnostic work-up period and allowed for the immediate treatment of the patient.展开更多
The chemical components of the essential oils in the barks and leaves of Eucommia ulmoides Oliver were analyzed and compared by chromatograms and mass spectra technique, heuristic evolving latent projections (HELP), a...The chemical components of the essential oils in the barks and leaves of Eucommia ulmoides Oliver were analyzed and compared by chromatograms and mass spectra technique, heuristic evolving latent projections (HELP), alternative moving window factor analysis (AMWFA) algorithms and normalization method based on the peak areas; the flavones in the barks and leaves of Eucommia ulmoides Oliver were separated on an ODS column by gradient elution carried out with the flow phase consisting of water, methanol and phosphoric acid (0.1%), and their contents were quantitatively determined by standard curve method and diode array detection (DAD) at 362 nm. The results show that 68 and 73 compounds respectively from essential oils of the barks and leaves of Eucommia ulmoides Oliver are identified, and there are 33 mutual compounds among 108 compounds determined. The total contents of these volatile components of the two samples possess 92.9% and 97.75% of the gross of the relevant essential oils, respectively; the contents of the rutin, quercetin and kaempferol in the barks and leaves of Eucommia ulmoides Oliver are 0.016 9, 0.003 6, 0.002 1 and 0.064 4, 0.030 2, 0.010 0 mg/g, respectively, and the determination recoveries are 95.2%-106.2%. The comparative analysis shows that for the barks and leaves of Eucommia ulmoides Oliver, there are significant differences in their components of the relevant essential oils and flavones.展开更多
To study the collapse of imperfect subsea pipelinos, a 2D high-order nonlinear model is developed. In this model, the large deformation of the pipes is considered by raiaining the high-order nonlinear terms of strain....To study the collapse of imperfect subsea pipelinos, a 2D high-order nonlinear model is developed. In this model, the large deformation of the pipes is considered by raiaining the high-order nonlinear terms of strain. In addi-tion, the J2 plastic flow theory is adopted to describe the elasioplastic constitutive relations of material. The quasi-static process of collapse is analyzed by the increment method. For each load step, the equations based on the principle of virtual work are presented and solved by the discrete Newton's method. Furthermore, finite element simulations and full-scale experiments were preformed to validate the results of the model. Research on the major influencing factors of collapse pressure, including D/t, material type and initial ovality, is also presented.展开更多
Performance of a pulse tube cooler significantly depends on the efficient operation of its regenerator. Influence of input acoustic power on regenerator's performance is simulated and analyzed with simple harmonic...Performance of a pulse tube cooler significantly depends on the efficient operation of its regenerator. Influence of input acoustic power on regenerator's performance is simulated and analyzed with simple harmonic analysis method. Given regenera-tor's dimensions and pressure ratio,there is an optimal input acoustic power for achieving a highest coefficient of performance,due to a compromise between relative time-averaged total energy flux in regenerator and relative acoustic power at regenerator's cold end. Additionally,optimal dimensions of regenerator are also estimated and presented for different input acoustic powers. The computed optimal diameter obviously increases with increase of input acoustic power,while the optimal length decreases slightly,and as a result,a larger input acoustic power requires a smaller aspect ratio (length over diameter).展开更多
Thermal performance of a loop heat pipe with two evaporators and two condensers was examined using a lumped network model analysis. Thermosyphon-type vertical loop heat pipe and capillary-pump-type horizontal loop hea...Thermal performance of a loop heat pipe with two evaporators and two condensers was examined using a lumped network model analysis. Thermosyphon-type vertical loop heat pipe and capillary-pump-type horizontal loop heat pipe were calculated by examining the change of heating rate of two evaporators. Calculation results showed that the vapor and liquid flow rates in the loop heat pipe and the thermal conductance of the heat pipe changed significantly depending on the distribution ratio of the heating rate of the multiple evaporators. The thermal performance of the vertical loop heat pipe with two evaporators was also examined and experimental results of flow direction and thermal conductance of the heat pipe agreed with the analytical results. The lumped network model analysis is therefore considered accurate and preferable for the practical design of a loop heat pipe with multiple evaporators.展开更多
The present work focuses on experimental and numerical investigations of the augmentation of turbulent flow heat transfer in a horizontal circular tube by means of mesh inserts with air as the working fluid. Sixteen t...The present work focuses on experimental and numerical investigations of the augmentation of turbulent flow heat transfer in a horizontal circular tube by means of mesh inserts with air as the working fluid. Sixteen types of mesh inserts with screen diameters of 22 mm, 18 mm, 14 mm and 10 mm for varying distance between the screens of 50 mm, 100 mm, 150 mm and 200 mm in the porosity range of 99.73 to 99.98 were considered for experimentation. The horizontal tube was subjected to constant and uniform heat flux. The Reynolds number varied from 7,000 to 14,000. The results are compared with the clear flow case when no porous material was used. Computational fluid dynamics (CFD) techniques were also employed to perform optimization analysis of the mesh inserts. The horizontal tube along with mesh inserts was modeled in Gambit 2.2.30 with fine meshing and analyzed using FLUENT 6.2.16. CFD analysis was performed initially for plain tube and the results are compared with experimental values for validation.展开更多
The first decision we need to make in a structural load assessment is what approach should be applied, a linear approach or a non-linear one. The correct decision comes from understanding of the technology used in the...The first decision we need to make in a structural load assessment is what approach should be applied, a linear approach or a non-linear one. The correct decision comes from understanding of the technology used in the linear and non-linear approaches and also comes from the understanding of the problem to he analyzed. From engineering practice, it has been found that many non-linear effects can be taken into account in a linear model with appropriate approach. A study of hydrodynamic structural load on a stinger of a pipe-laying vessel is presented in this paper. The results of a non-linear analysis are compared to those of linear models with different approaches, and how the nonlinear effect can be involved in a linear model is discussed. The recommendations on how to estimate the non-linear effects in a linear structural load model is discussed.展开更多
This paper reports on numerical investigations aimed at understanding the influence of circumferential casing grooves on the tip leakage flow and its resulting vortical structures.The results and conclusions are based...This paper reports on numerical investigations aimed at understanding the influence of circumferential casing grooves on the tip leakage flow and its resulting vortical structures.The results and conclusions are based on steady state 3D numerical simulations of the well-known transonic axial compressor NASA Rotor 37 near stall operating conditions.The calculations carried out on the casing treatment configuration reveal an important modification of the vortex topology at the rotor tip clearance.Circumferential grooves limit the expansion of the tip leakage vortex in the direction perpendicular to the blade chord,but generate a set of secondary tip leakage vortices due to the interaction with the leakage mass flow.Finally,a deeper investigation of the tip leakage flow is proposed.展开更多
In this study, exergy efficiency is defined to evaluate convective heat transfer in a tube based on the local exergy destruction rate from the equilibrium equation of available potential. By calculating this destructi...In this study, exergy efficiency is defined to evaluate convective heat transfer in a tube based on the local exergy destruction rate from the equilibrium equation of available potential. By calculating this destruction rate, the local irreversibility of convective heat transfer can be evaluated quantitatively. The exergy efficiency and distribution of local exergy destruction rate for a smooth tube, an enhanced tube into which short-width twisted tape has been inserted, and an optimized tube with exergy destruction minimization are analyzed by solving the governing equations through a finite volume method(FVM). For the smooth tube, the exergy efficiency increases with increasing Reynolds number(Re) and decreases as the heat flux increases, whereas the Nusselt number(Nu) remains constant. For the enhanced tube, the exergy efficiency increases with increasing Reynolds number and increases as the short-width rate(w) increases. An analysis of the distribution of the local exergy destruction rate for a smooth tube shows that exergy destruction in the annular region between the core flow and tube wall is the highest. Furthermore, the exergy destruction for the enhanced and optimized tubes is reduced compared with that of the smooth tube. When the Reynolds number varies from 500 to 1750, the exergy efficiencies for the smooth, enhanced, and optimized tubes are in the ranges 0.367–0.485, 0.705–0.857, and 0.885–0.906, respectively. The results show that exergy efficiency is an effective evaluation criterion for convective heat transfer and the distribution of the local exergy destruction rate reveals the distribution of local irreversible loss. Disturbance in the core flow can reduce exergy destruction, and improve the exergy efficiency as well as heat transfer rate. Besides, optimization with exergy destruction minimization can provide effective guidance to improve the technology of heat transfer enhancement.展开更多
Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes ove...Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations(basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.展开更多
The thermal performance of a rectangular loop with a horizontal heating segment and a partly cooling vertical leg is studied. By one-dimensional approach, traditional friction factor and empirical correlation, a modif...The thermal performance of a rectangular loop with a horizontal heating segment and a partly cooling vertical leg is studied. By one-dimensional approach, traditional friction factor and empirical correlation, a modified Grashof number Gr* which turns out to be very important in the description of circulation flow is introduced. A new correlation for Nusselt number of the horizontal heater is obtained and the comparison with experimental raines shows good agreement.展开更多
Balcony spill plume is one of the main plume forms in an atrium fire, its thermal behavior which is important to the designers for the smoke control system design is still not well understood now. The fire-induced aer...Balcony spill plume is one of the main plume forms in an atrium fire, its thermal behavior which is important to the designers for the smoke control system design is still not well understood now. The fire-induced aerodynamics of balcony spill plume would be studied by the numerical method in this paper. Some uncertainties relating to the available calculation methods for the smoke production rate would be reexamined. Numerical results indicated that using an entrainment coefficient 0.11 would be better than 0.16 in describing the entrainment behavior, end effect should not be ignored for the plume being not two-dimensional (2-D). Suitable empirical spill plume equations would be recommended for the smoke management system design.展开更多
Rare SWCNT materials contain both metallic SWCNT (m-SWCNT) and semi-conducting SWCNT(s-SWCNT). Since m- SWCNT and s-SWCNT have very different applications, it is necessary to differentiate them so as to further se...Rare SWCNT materials contain both metallic SWCNT (m-SWCNT) and semi-conducting SWCNT(s-SWCNT). Since m- SWCNT and s-SWCNT have very different applications, it is necessary to differentiate them so as to further separate them for more efficient CNT utilization. To achieve this goal, the authors established a dielectric force microscope (DFM) detection system to differentiate s-SWCNT from m-SWCNT, based on different 2c~ force decided by SWCNT's conductivity under AC electric field. The experimental results showed that s-SWCNT can be clearly differentiated from m-SWCNT. The statistics analysis shows that the detected number proportion of s-SWCNT to m-SWCNT matches the well-known proportion 2:1 in the normally prepared CNT materials. The above results strongly verified the effectiveness of the detection system.展开更多
文摘Considering the maximum elastic limitation of the used material with newly advanced technology,the study focuses on optimization of a mortar barrel structure by thinning the wall to reduce the weight.Firstly,static analysis of barrel structure parameters is done based on finite element analysis(FEA)method and 3Dsolid model of the barrel is established based on Unigraphics NX(UG).Secondly,the 3Dsolid model is simplified and transplanted to ANSYS for barrel wall pressure calculation.Thus,the change curves of the stress exerted on the barrel wall at different locations perpendicular to the axial direction with wall thinning are drawn.By analyzing all possible optimization schemes,the optimal design that enables the barrel to have higher bearing capacity is got.The optimized barrel structure is verified by means of fluid-solid coupling dynamic response analysis.The results show that the static analysis results are closer to real stress conditions than dynamic analysis results.Finally,the barrel weight is reduced by 13%after simulation optimization and the light weight design of the barrel is effective and reliable.
基金CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico of Brazil) for the scholarship to Prof. Rodrigo Vidonscky Pinto.
文摘Application of nanofluids in heat pipes usually presents satisfactory experimental results regarding a thermal resistance reduction of the heat pipe.However,the existing computational studies connecting heat pipes and nanofluids lack a deeper discussion regarding the validity of the models currently used for representing the behaviour of a nanofluid in a heat pipe,particularly for unusual base fluids and nanoparticles such as carbon nanotubes or ethylene glycol.Thus,this comparative study presents the results of a set of computational simulations using pre-established equations for modelling a nanofluid in a heat pipe with experimental data from the literature.The results show agreement with the expected behaviour qualitatively and the presented maximum variations between 1.5% and 23.9% in comparison to the experimentally measured average temperatures.Also,the experimentally obtained temperature distribution of a heat pipe could not be reached numerically only with the use of adequate thermal properties,indicating that the boiling phenomenon is more complex than the current model used for computational simulations.Moreover,the existence of an optimal particle volume fraction for using nanofluids in this application could be observed by combining different properties models.
文摘The paper is to review the clinical and pathophysiologic differences between of nonerosive reflux disease (NERD) and reflux esophagitis (RE), and to propose a treatment strategy for NERD, especially for patients in Asia. A Medline search was performed regarding the clinical and pathophysiologic differences between NERD and RE, and treatment of NERD and RE. The characteristics of NERD patients in Asia are as follows: (1) high proportion of female patients, (2) low frequency of hiatal hernia, (3) high frequency of H pylori infection, (4) severe glandular atrophy of the gastric mucosa, and (5) frequent resistance to proton pump inhibitor (PPI) therapy. In Asian NERD patients, exposure of the esophagus to acid is not increased, and esophageal motility is normal. These characteristics are similar to those of patients in Western countries. Our recommended first-choice treatment is administration of PPI in combination with a prokinetic agent. However, at present, because there is limited evidence regarding effective treatments for NERD, it is best to try several different treatment strategies to find the best treatment for each patient.
文摘In this study, we examined the expression of inducible nitric oxide s ynthase (iNOS) and vascular endothelial growth factor (VEGF) by immunohistoc hemi cal staining in 76 tissue sections collected from hepatocellular carcinoma (HCC) patients undergoing hepatectomy. Microvascular density (MVD) was determined by counting endothelial cells immunostained using anti-CD34 antibody. We performe d DNA-flow cytometric analyses to elucidate the impact of iNOS and VEGF expressi o n on the cell cycle of HCC. Most of the HCC cells that invaded stroma were mark edly immunostained by iNOS antibody. The iNOS stain intensity of the liver tissu e close to the tumor edge was stronger than that of HCC tissue, and the stronges t was the hepatocytes closer to the tumor tissue. However, iNOS expression in 10 normal hepatic samples was undetectable. VEGF positive expression ratio was 84. 8% in iNOS positive expression cases, and the ratio was 35.3% in negative cases. There was significant correlation (P=0.000) between iNOS and VEGF expressi on. Moreover, iNOS expression was significantly associated with bcl-2 and MVD, but w ithout p53 expression. DNA-flow cytometric analyses showed that combined expres s ion of iNOS and VEGF had significant impact on the cell cycle in HCC. PI (Proli ferating Index) and SPF (S-phase fraction) in the combined positive expression o f iNOS and VEGF group was significantly higher than that in the combined negativ e group. The present findings suggested that iNOS expression was significantly a ssociated with angiogenesis, bcl-2 and cell proliferation of HCC.
基金Supported by the Fund of"985 Project"of Tianjin University (TD2001011).
文摘Characteristics of R22 and its new alternative refrigerant R200 flowing through adiabatic capillary tubes are investigated based on the homogeneous model. Extensive flow variables along tube length such as pressure, temperature, viscosity, velocity. Reynolds number, friction factor and vapor quality etc are compared between the two fluids under the same operating condition. Two cases are considered, namely, either the same tube length or the same mass flow rate as inlet condition. The results show that the mass flow rate in the capillary tube of R290 is 40% lower than that of R22 due to the differences of physical properties between the two fluids. Further. a parametric analysis is performed and it appears that effects of geometric and thermodynamic parameters on mass flow rate of R290 are weaker than that of R22. When the condensing temperature is increased from 40℃ to 50℃ C. the mass flow rate for R22 is increased by 16%. while the increasing rate for R290 is 13%.
基金Supported by the Independent Innovation Foundation for National Defense of Huazhong University of Science and Technology(No.01-18-140019)
文摘The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determined by publications. The turbulent flow in the piping elbow is simulated with large eddy simulation (LES). Following this, a hybrid method of combining LES and Lighthill's acoustic analogy theory is used to simulate the hydrodynamic noise and sound sources are solved as volume sources in code Actran. In addition, the flow-induced vibration of the piping elbow is investigated based on a fluid-structure interaction (FSI) code. The LES results indicate that the range of vortex zone in the elbow without the guide vane is larger than the case with the guide vane, and the guide vane is effective in reducing flow-induced noise and vibration in the 90° piping elbow at different Reynolds numbers.
文摘Primary central nervous system lymphoma(PCNSL) is a rare disorder that, in 95% of cases, represents diffuse large B-cell lymphoma. As such, making an accurate diagnosis is important. At present, stereotactic-guided biopsy is a recognized method of choice for tissue analysis. However, the diagnostic work-up for high-risk patients is determined by their performance status. Here,we report a case of PCNSL in a high-risk patient, for whom diagnosis was established by cerebrospinal fluid cytology and flow cytometry, which significantly shortened a diagnostic work-up period and allowed for the immediate treatment of the patient.
基金Project(20235020) supported by the National Natural Science Foundation of China
文摘The chemical components of the essential oils in the barks and leaves of Eucommia ulmoides Oliver were analyzed and compared by chromatograms and mass spectra technique, heuristic evolving latent projections (HELP), alternative moving window factor analysis (AMWFA) algorithms and normalization method based on the peak areas; the flavones in the barks and leaves of Eucommia ulmoides Oliver were separated on an ODS column by gradient elution carried out with the flow phase consisting of water, methanol and phosphoric acid (0.1%), and their contents were quantitatively determined by standard curve method and diode array detection (DAD) at 362 nm. The results show that 68 and 73 compounds respectively from essential oils of the barks and leaves of Eucommia ulmoides Oliver are identified, and there are 33 mutual compounds among 108 compounds determined. The total contents of these volatile components of the two samples possess 92.9% and 97.75% of the gross of the relevant essential oils, respectively; the contents of the rutin, quercetin and kaempferol in the barks and leaves of Eucommia ulmoides Oliver are 0.016 9, 0.003 6, 0.002 1 and 0.064 4, 0.030 2, 0.010 0 mg/g, respectively, and the determination recoveries are 95.2%-106.2%. The comparative analysis shows that for the barks and leaves of Eucommia ulmoides Oliver, there are significant differences in their components of the relevant essential oils and flavones.
基金Supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2011ZX05026-005)the National Natural Science Foundation of China(No.51239008)the National Basic Research Program of China("973"Program,No.2014CB046800)
文摘To study the collapse of imperfect subsea pipelinos, a 2D high-order nonlinear model is developed. In this model, the large deformation of the pipes is considered by raiaining the high-order nonlinear terms of strain. In addi-tion, the J2 plastic flow theory is adopted to describe the elasioplastic constitutive relations of material. The quasi-static process of collapse is analyzed by the increment method. For each load step, the equations based on the principle of virtual work are presented and solved by the discrete Newton's method. Furthermore, finite element simulations and full-scale experiments were preformed to validate the results of the model. Research on the major influencing factors of collapse pressure, including D/t, material type and initial ovality, is also presented.
基金Project supported by the National Natural Sciences Foundation of China (No. 50536040)the University Doctoral Subject Special Foundation of China (No. 20050335047)the Postdoctoral Sci-ence Foundation of Zhejiang Province (No. 2006-bsh-21),China
文摘Performance of a pulse tube cooler significantly depends on the efficient operation of its regenerator. Influence of input acoustic power on regenerator's performance is simulated and analyzed with simple harmonic analysis method. Given regenera-tor's dimensions and pressure ratio,there is an optimal input acoustic power for achieving a highest coefficient of performance,due to a compromise between relative time-averaged total energy flux in regenerator and relative acoustic power at regenerator's cold end. Additionally,optimal dimensions of regenerator are also estimated and presented for different input acoustic powers. The computed optimal diameter obviously increases with increase of input acoustic power,while the optimal length decreases slightly,and as a result,a larger input acoustic power requires a smaller aspect ratio (length over diameter).
文摘Thermal performance of a loop heat pipe with two evaporators and two condensers was examined using a lumped network model analysis. Thermosyphon-type vertical loop heat pipe and capillary-pump-type horizontal loop heat pipe were calculated by examining the change of heating rate of two evaporators. Calculation results showed that the vapor and liquid flow rates in the loop heat pipe and the thermal conductance of the heat pipe changed significantly depending on the distribution ratio of the heating rate of the multiple evaporators. The thermal performance of the vertical loop heat pipe with two evaporators was also examined and experimental results of flow direction and thermal conductance of the heat pipe agreed with the analytical results. The lumped network model analysis is therefore considered accurate and preferable for the practical design of a loop heat pipe with multiple evaporators.
文摘The present work focuses on experimental and numerical investigations of the augmentation of turbulent flow heat transfer in a horizontal circular tube by means of mesh inserts with air as the working fluid. Sixteen types of mesh inserts with screen diameters of 22 mm, 18 mm, 14 mm and 10 mm for varying distance between the screens of 50 mm, 100 mm, 150 mm and 200 mm in the porosity range of 99.73 to 99.98 were considered for experimentation. The horizontal tube was subjected to constant and uniform heat flux. The Reynolds number varied from 7,000 to 14,000. The results are compared with the clear flow case when no porous material was used. Computational fluid dynamics (CFD) techniques were also employed to perform optimization analysis of the mesh inserts. The horizontal tube along with mesh inserts was modeled in Gambit 2.2.30 with fine meshing and analyzed using FLUENT 6.2.16. CFD analysis was performed initially for plain tube and the results are compared with experimental values for validation.
文摘The first decision we need to make in a structural load assessment is what approach should be applied, a linear approach or a non-linear one. The correct decision comes from understanding of the technology used in the linear and non-linear approaches and also comes from the understanding of the problem to he analyzed. From engineering practice, it has been found that many non-linear effects can be taken into account in a linear model with appropriate approach. A study of hydrodynamic structural load on a stinger of a pipe-laying vessel is presented in this paper. The results of a non-linear analysis are compared to those of linear models with different approaches, and how the nonlinear effect can be involved in a linear model is discussed. The recommendations on how to estimate the non-linear effects in a linear structural load model is discussed.
文摘This paper reports on numerical investigations aimed at understanding the influence of circumferential casing grooves on the tip leakage flow and its resulting vortical structures.The results and conclusions are based on steady state 3D numerical simulations of the well-known transonic axial compressor NASA Rotor 37 near stall operating conditions.The calculations carried out on the casing treatment configuration reveal an important modification of the vortex topology at the rotor tip clearance.Circumferential grooves limit the expansion of the tip leakage vortex in the direction perpendicular to the blade chord,but generate a set of secondary tip leakage vortices due to the interaction with the leakage mass flow.Finally,a deeper investigation of the tip leakage flow is proposed.
基金supported by the National Basic Research Program of China(Grant No.2013CB228302)
文摘In this study, exergy efficiency is defined to evaluate convective heat transfer in a tube based on the local exergy destruction rate from the equilibrium equation of available potential. By calculating this destruction rate, the local irreversibility of convective heat transfer can be evaluated quantitatively. The exergy efficiency and distribution of local exergy destruction rate for a smooth tube, an enhanced tube into which short-width twisted tape has been inserted, and an optimized tube with exergy destruction minimization are analyzed by solving the governing equations through a finite volume method(FVM). For the smooth tube, the exergy efficiency increases with increasing Reynolds number(Re) and decreases as the heat flux increases, whereas the Nusselt number(Nu) remains constant. For the enhanced tube, the exergy efficiency increases with increasing Reynolds number and increases as the short-width rate(w) increases. An analysis of the distribution of the local exergy destruction rate for a smooth tube shows that exergy destruction in the annular region between the core flow and tube wall is the highest. Furthermore, the exergy destruction for the enhanced and optimized tubes is reduced compared with that of the smooth tube. When the Reynolds number varies from 500 to 1750, the exergy efficiencies for the smooth, enhanced, and optimized tubes are in the ranges 0.367–0.485, 0.705–0.857, and 0.885–0.906, respectively. The results show that exergy efficiency is an effective evaluation criterion for convective heat transfer and the distribution of the local exergy destruction rate reveals the distribution of local irreversible loss. Disturbance in the core flow can reduce exergy destruction, and improve the exergy efficiency as well as heat transfer rate. Besides, optimization with exergy destruction minimization can provide effective guidance to improve the technology of heat transfer enhancement.
基金supported by a grant from 2016 Research Funds of Andong National University
文摘Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations(basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.
文摘The thermal performance of a rectangular loop with a horizontal heating segment and a partly cooling vertical leg is studied. By one-dimensional approach, traditional friction factor and empirical correlation, a modified Grashof number Gr* which turns out to be very important in the description of circulation flow is introduced. A new correlation for Nusselt number of the horizontal heater is obtained and the comparison with experimental raines shows good agreement.
基金the research grant of Beijing Municipal Bureau of Personnel with account number 38004016200701Natural Science Foundation of Beijing with account number 8082004
文摘Balcony spill plume is one of the main plume forms in an atrium fire, its thermal behavior which is important to the designers for the smoke control system design is still not well understood now. The fire-induced aerodynamics of balcony spill plume would be studied by the numerical method in this paper. Some uncertainties relating to the available calculation methods for the smoke production rate would be reexamined. Numerical results indicated that using an entrainment coefficient 0.11 would be better than 0.16 in describing the entrainment behavior, end effect should not be ignored for the plume being not two-dimensional (2-D). Suitable empirical spill plume equations would be recommended for the smoke management system design.
基金supported by the National Natural Science Foundation of China(Grant Nos.51005230,61375091,51375477)the CAS FEA International Partnership Program for Creative Research Team
文摘Rare SWCNT materials contain both metallic SWCNT (m-SWCNT) and semi-conducting SWCNT(s-SWCNT). Since m- SWCNT and s-SWCNT have very different applications, it is necessary to differentiate them so as to further separate them for more efficient CNT utilization. To achieve this goal, the authors established a dielectric force microscope (DFM) detection system to differentiate s-SWCNT from m-SWCNT, based on different 2c~ force decided by SWCNT's conductivity under AC electric field. The experimental results showed that s-SWCNT can be clearly differentiated from m-SWCNT. The statistics analysis shows that the detected number proportion of s-SWCNT to m-SWCNT matches the well-known proportion 2:1 in the normally prepared CNT materials. The above results strongly verified the effectiveness of the detection system.