Knowledge and management of soil pH, particularly soil acidity across spatially variable soils is important, although this is greatly ignored by farmers. The objective of the study was to evaluate in-field spatial var...Knowledge and management of soil pH, particularly soil acidity across spatially variable soils is important, although this is greatly ignored by farmers. The objective of the study was to evaluate in-field spatial variability of soil pH, and compare the efficiency of managing soil pH through site-specific method vs. uniform lime application. The study was conducted on three sites with study sites I and II (23°50' S; 29°40' E), and study sites IIl (23°59' S; 28°52' E) adjacent to each other in the semi-arid regions of the Limpopo Province, South Africa. Soil samples were taken in four replicates from geo-referenced locations on a regular grid of 30 m. Soils were analyzed for pH, and SMP buffer pH. Soil maps were produced with Geographic Information System (GIS) software, and soil pH datasets were interpolated using a geostatistical tool of inverse distance weighing (IDW). Soil pH in the fields varied from 3.93 to 7.00. An excess amount of lime as high as 30 t/ha under uniform lime application were recorded. These recommendations were in excess on field areas that needed little or no lime applications. Again, there was an under applications of lime as much as 35 t/ha for uniform liming applications. This under- and over-recommendations of lime based on average soil pH values suggests that uniform soil acidity correction and soil pH management strategy is not an appropriate strategy to be adopted in these fields with spatially variable soils. The field can be divided into lime application zones of (1) high rates of lime, (2) low rates of lime and (3) areas that requires no lime at all so that lime rates are applied per zone. A key to site-specific soil acidity correction with lime is to reach ideal soil pH for the crop in all parts of the field.展开更多
Along with the continuous development and application of information technology, the information management system of the modem enterprises plays a crucial role in achieving efficient enterprise development. In this p...Along with the continuous development and application of information technology, the information management system of the modem enterprises plays a crucial role in achieving efficient enterprise development. In this paper, the current problems in the information management system of modem enterprises are analyzed, the demand analysis of the information management system design is introduced, and also a feasible enterprise information management system is designed based on B/S mode.展开更多
The rapid development of the Interact had a tremendous impact to disseminate information, since the beginning of the 21 st century, the rapid development of China' s e-commerce not only provides a large number of ord...The rapid development of the Interact had a tremendous impact to disseminate information, since the beginning of the 21 st century, the rapid development of China' s e-commerce not only provides a large number of orders for logistics companies, but also puts a higher demand for logistics companies. Information technology has become the soul of modem logistics, information revolution for logistics enterprises can provide help to the development of information technology and modernization. This paper discusses the characteristics of logistics management information, and then discusses the logistics information systems that is a huge advantage in the logistics information systems in logistics management, and finally summarize the development of logistics enterprises in China based on issues raised solutions to this problem.展开更多
This research is a development in management information system (MIS) planning based on operation analysis and development according to concurrent engineering approach and reestablishment of database management. Acc...This research is a development in management information system (MIS) planning based on operation analysis and development according to concurrent engineering approach and reestablishment of database management. According to our case study industry, such industry currently used traditional network systems such as LAN, and "Bus Network" Network Topology. Client/Server distributed computing has a problem with database management in data redundancy, data inconsistency, and data independency. For Network Topology, Bus Network has problem with multitasking since the network are able to handle only a set of data at a time so the traffic problem will occur when multiple users request for the service. Thus, such condition is inconsistent with concurrent engineering which must be able to access the data simultaneously. As a consequence, this study develops a network system, network system of working system, using LAN and "Star Network" network topology. The file server processing distributed is an application while database is stored in host computer or file server but the data will be processed in users' computer. When the user needs to access the data, file server will send it to the user and the user can further analysis or manage such data in the user computer, so called "Hierarchical Database Model". Hierarchical database structure is easily developed like general organization command structure with different level of responsibility. In details, the data level in the database is divided into three levels including DBI, DB2, and DB3, so development of simultaneously systemic flow and access of various critical data is performed in parallel. Furthermore, this is consistent with access of all three data levels including: Level 1 is overall dataflow of both inside and outside the organization; Level 2 is dataflow of each division in the organization; and Level 3 is dataflow of subunit in each division in the organization. After systemize flow and access of data with concurrent engineering as mentioned, it provided optimal efficiency in the whole production system management reducing loss in the whole system of the organization展开更多
文摘Knowledge and management of soil pH, particularly soil acidity across spatially variable soils is important, although this is greatly ignored by farmers. The objective of the study was to evaluate in-field spatial variability of soil pH, and compare the efficiency of managing soil pH through site-specific method vs. uniform lime application. The study was conducted on three sites with study sites I and II (23°50' S; 29°40' E), and study sites IIl (23°59' S; 28°52' E) adjacent to each other in the semi-arid regions of the Limpopo Province, South Africa. Soil samples were taken in four replicates from geo-referenced locations on a regular grid of 30 m. Soils were analyzed for pH, and SMP buffer pH. Soil maps were produced with Geographic Information System (GIS) software, and soil pH datasets were interpolated using a geostatistical tool of inverse distance weighing (IDW). Soil pH in the fields varied from 3.93 to 7.00. An excess amount of lime as high as 30 t/ha under uniform lime application were recorded. These recommendations were in excess on field areas that needed little or no lime applications. Again, there was an under applications of lime as much as 35 t/ha for uniform liming applications. This under- and over-recommendations of lime based on average soil pH values suggests that uniform soil acidity correction and soil pH management strategy is not an appropriate strategy to be adopted in these fields with spatially variable soils. The field can be divided into lime application zones of (1) high rates of lime, (2) low rates of lime and (3) areas that requires no lime at all so that lime rates are applied per zone. A key to site-specific soil acidity correction with lime is to reach ideal soil pH for the crop in all parts of the field.
文摘Along with the continuous development and application of information technology, the information management system of the modem enterprises plays a crucial role in achieving efficient enterprise development. In this paper, the current problems in the information management system of modem enterprises are analyzed, the demand analysis of the information management system design is introduced, and also a feasible enterprise information management system is designed based on B/S mode.
文摘The rapid development of the Interact had a tremendous impact to disseminate information, since the beginning of the 21 st century, the rapid development of China' s e-commerce not only provides a large number of orders for logistics companies, but also puts a higher demand for logistics companies. Information technology has become the soul of modem logistics, information revolution for logistics enterprises can provide help to the development of information technology and modernization. This paper discusses the characteristics of logistics management information, and then discusses the logistics information systems that is a huge advantage in the logistics information systems in logistics management, and finally summarize the development of logistics enterprises in China based on issues raised solutions to this problem.
文摘This research is a development in management information system (MIS) planning based on operation analysis and development according to concurrent engineering approach and reestablishment of database management. According to our case study industry, such industry currently used traditional network systems such as LAN, and "Bus Network" Network Topology. Client/Server distributed computing has a problem with database management in data redundancy, data inconsistency, and data independency. For Network Topology, Bus Network has problem with multitasking since the network are able to handle only a set of data at a time so the traffic problem will occur when multiple users request for the service. Thus, such condition is inconsistent with concurrent engineering which must be able to access the data simultaneously. As a consequence, this study develops a network system, network system of working system, using LAN and "Star Network" network topology. The file server processing distributed is an application while database is stored in host computer or file server but the data will be processed in users' computer. When the user needs to access the data, file server will send it to the user and the user can further analysis or manage such data in the user computer, so called "Hierarchical Database Model". Hierarchical database structure is easily developed like general organization command structure with different level of responsibility. In details, the data level in the database is divided into three levels including DBI, DB2, and DB3, so development of simultaneously systemic flow and access of various critical data is performed in parallel. Furthermore, this is consistent with access of all three data levels including: Level 1 is overall dataflow of both inside and outside the organization; Level 2 is dataflow of each division in the organization; and Level 3 is dataflow of subunit in each division in the organization. After systemize flow and access of data with concurrent engineering as mentioned, it provided optimal efficiency in the whole production system management reducing loss in the whole system of the organization