The paper follows possible specification of a control algorithm of a WS (water management system) during floods using the procedures of AI (artificial intelligence). The issue of minimizing negative impacts of flo...The paper follows possible specification of a control algorithm of a WS (water management system) during floods using the procedures of AI (artificial intelligence). The issue of minimizing negative impacts of floods represents influencing and controlling a dynamic process of the system where the main regulation elements are water reservoirs. Control of water outflow from reservoirs is implicitly based on the used model (titled BW) based on FR (fuzzy regulation). Specification of a control algorithm means dealing with the issue of preparing a knowledge base for the process of tuning fuzzy regulators based on an I/O (input/output) matrix obtained by optimization of the target behaviour of WS. Partial results can be compared with the regulation outputs when specialized tuning was used for the fuzzy regulator of the control algorithm. Basic approaches follow from the narrow relation on BW model use to simulate floods, without any connection to real water management system. A generally introduced model allows description of an outflow dynamic system with stochastic inputs using submodels of robust regression in the outflow module. The submodels are constructed on data of historical FS (flood situations).展开更多
This paper describes the study analysis performed to evaluate the available and potential solutions to control the highly increasing short circuit (SC) levels in Kuwait power system. The real Kuwait High Voltage (H...This paper describes the study analysis performed to evaluate the available and potential solutions to control the highly increasing short circuit (SC) levels in Kuwait power system. The real Kuwait High Voltage (HV) network was simulated to examine different measures at both 275 kV and 132 kV stations. The simulation results show that the short circuit currents exceed the permissible levels (40 kA in the 132 kV network and 63 kA in the 275 kV network) in some specific points. The examined measures include the a study on changing the neutral point policy, changing some lines from alternating current (AC) to direct current (DC), dividing specific bus bars in some generating stations and applying current limiters. The paper also presents a new plan for the transmission network in order to manage the expected increase in short circuit levels in the future.展开更多
文摘The paper follows possible specification of a control algorithm of a WS (water management system) during floods using the procedures of AI (artificial intelligence). The issue of minimizing negative impacts of floods represents influencing and controlling a dynamic process of the system where the main regulation elements are water reservoirs. Control of water outflow from reservoirs is implicitly based on the used model (titled BW) based on FR (fuzzy regulation). Specification of a control algorithm means dealing with the issue of preparing a knowledge base for the process of tuning fuzzy regulators based on an I/O (input/output) matrix obtained by optimization of the target behaviour of WS. Partial results can be compared with the regulation outputs when specialized tuning was used for the fuzzy regulator of the control algorithm. Basic approaches follow from the narrow relation on BW model use to simulate floods, without any connection to real water management system. A generally introduced model allows description of an outflow dynamic system with stochastic inputs using submodels of robust regression in the outflow module. The submodels are constructed on data of historical FS (flood situations).
文摘This paper describes the study analysis performed to evaluate the available and potential solutions to control the highly increasing short circuit (SC) levels in Kuwait power system. The real Kuwait High Voltage (HV) network was simulated to examine different measures at both 275 kV and 132 kV stations. The simulation results show that the short circuit currents exceed the permissible levels (40 kA in the 132 kV network and 63 kA in the 275 kV network) in some specific points. The examined measures include the a study on changing the neutral point policy, changing some lines from alternating current (AC) to direct current (DC), dividing specific bus bars in some generating stations and applying current limiters. The paper also presents a new plan for the transmission network in order to manage the expected increase in short circuit levels in the future.