In-service hydrocarbons must be transported at high temperature and high pressure to ease the flow and prevent the solidification of the wax fraction. The pipeline containing hot oil will expand longitudinally due to ...In-service hydrocarbons must be transported at high temperature and high pressure to ease the flow and prevent the solidification of the wax fraction. The pipeline containing hot oil will expand longitudinally due to the rise in temperature. If such expansion is resisted, for example by frictional effects over a kilometer or so of pipeline, compressive axial stress will be built up in the pipe-wall. The compressive forces are often so large that they induce vertical buckling of buffed pipelines, which can jeopardize the structural integrity of the pipeline. A typical initial imperfection named continuous support mode of submarine pipeline was studied. Based on this type of initial imperfection, the analytical solution of vertical thermal buckling was introduced and an elastic-plasticity finite element analysis (FEA) was developed. Both the analytical and the finite element methodology were applied to analyze a practice in Bohai Gulf, China. The analyzing results show that upheaval buckling is most likely to build up from the initial imperfection of the pipeline and the buckling temperature depends on the amplitude of initial imperfection. With the same amplitude of initial imperfection, the triggering temperature difference of upheaval buckling increases with covered depth of the pipeline, the soil strength and the friction between the pipeline and subsoil.展开更多
Considering the special resistance characteristics of fluids flowing through ducts with small gaps, experiments are performed to investigate the resistance characteristics of single-phase water, which is forced to flo...Considering the special resistance characteristics of fluids flowing through ducts with small gaps, experiments are performed to investigate the resistance characteristics of single-phase water, which is forced to flow through ver tical annuli. The gap sizes are 0.9, 1.4 and 2.4mm, respectively. The experiments are conducted under condition of 1atm. The water in the annuli is heated by high temperature water reversely flowing through the inner tube and the outer annulus. The results show that the flow pattern begin to change from laminar to turbulent before Reynolds number approaches 2000, the flow resistance in annulus has little relations with the temperature difference and ways of being heated, but mainly depends on the ratio of mass flux to the width of annulus.展开更多
基金Project(51021004) supported by Innovative Research Groups of the National Natural Science Foundation of ChinaProject(40776055) supported by the National Natural Science Foundation of china+1 种基金Project(1002) supported by State Key Laboratory of Ocean Engineering Foundation, ChinaProject(NCET 11 0370) supported by the Program for New Century Excellent Talents in Universities of China
文摘In-service hydrocarbons must be transported at high temperature and high pressure to ease the flow and prevent the solidification of the wax fraction. The pipeline containing hot oil will expand longitudinally due to the rise in temperature. If such expansion is resisted, for example by frictional effects over a kilometer or so of pipeline, compressive axial stress will be built up in the pipe-wall. The compressive forces are often so large that they induce vertical buckling of buffed pipelines, which can jeopardize the structural integrity of the pipeline. A typical initial imperfection named continuous support mode of submarine pipeline was studied. Based on this type of initial imperfection, the analytical solution of vertical thermal buckling was introduced and an elastic-plasticity finite element analysis (FEA) was developed. Both the analytical and the finite element methodology were applied to analyze a practice in Bohai Gulf, China. The analyzing results show that upheaval buckling is most likely to build up from the initial imperfection of the pipeline and the buckling temperature depends on the amplitude of initial imperfection. With the same amplitude of initial imperfection, the triggering temperature difference of upheaval buckling increases with covered depth of the pipeline, the soil strength and the friction between the pipeline and subsoil.
文摘Considering the special resistance characteristics of fluids flowing through ducts with small gaps, experiments are performed to investigate the resistance characteristics of single-phase water, which is forced to flow through ver tical annuli. The gap sizes are 0.9, 1.4 and 2.4mm, respectively. The experiments are conducted under condition of 1atm. The water in the annuli is heated by high temperature water reversely flowing through the inner tube and the outer annulus. The results show that the flow pattern begin to change from laminar to turbulent before Reynolds number approaches 2000, the flow resistance in annulus has little relations with the temperature difference and ways of being heated, but mainly depends on the ratio of mass flux to the width of annulus.