In order to find the ways to improve the elimination efficiency with high frequency magnetic field, a mathematical model of electromagnetic elimination (EME) in the tubule with high frequency magnetic field was set up...In order to find the ways to improve the elimination efficiency with high frequency magnetic field, a mathematical model of electromagnetic elimination (EME) in the tubule with high frequency magnetic field was set up. The calculated results show that by ignoring the flow of molten metal, when the surface magnetic induction intensity of the metal (B0) is 0.03 T and the diameter of the tubule is 8 mm, the non-metallic inclusions with 30 μm diameter can be wiped off in 7 s from the center of the molten aluminum, whereas the elimination time of the 5 μm non-metallic inclusions is more than 240 s. When B0 is 0.03 T, the diameter of the tubule is 8 mm and elimination time is more than 30 s, the elimination efficiency of 5μm, 10 μm and 30 μm non-metallic inclusions is about 60%, 90% and 100%, respectively, the elimination efficiency increases with the decreasing diameter of the tubule. It can be concluded that increasing the magnetic induction intensity or decreasing the diameter of the tubule can decrease the elimination time and improve the elimination efficiency in EME with high frequency magnetic field.展开更多
基金Projects (50474055 50274018) supported by the National Natural Science Foundation of China project (20052176) supported by the Natural Science Foundation of Liaoning, China
文摘In order to find the ways to improve the elimination efficiency with high frequency magnetic field, a mathematical model of electromagnetic elimination (EME) in the tubule with high frequency magnetic field was set up. The calculated results show that by ignoring the flow of molten metal, when the surface magnetic induction intensity of the metal (B0) is 0.03 T and the diameter of the tubule is 8 mm, the non-metallic inclusions with 30 μm diameter can be wiped off in 7 s from the center of the molten aluminum, whereas the elimination time of the 5 μm non-metallic inclusions is more than 240 s. When B0 is 0.03 T, the diameter of the tubule is 8 mm and elimination time is more than 30 s, the elimination efficiency of 5μm, 10 μm and 30 μm non-metallic inclusions is about 60%, 90% and 100%, respectively, the elimination efficiency increases with the decreasing diameter of the tubule. It can be concluded that increasing the magnetic induction intensity or decreasing the diameter of the tubule can decrease the elimination time and improve the elimination efficiency in EME with high frequency magnetic field.