The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic mod...The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic model for a network under a local pipe failure was established by the statistical regression. After the operation objectives under a local pipe failure were determined, the optimal operation model was developed and solved by the genetic algorithm. The program was developed and examined by a city distribution network. The optimal operation alternative shows that the electricity cost is saved approximately 11%, the income of the water corporation is increased approximately 5%, and the pressure in the water distribution network is distributed evenly to ensure the network safe operation. Therefore, the proposed method for optimal operation under local pipe failure is feasible and cost-effective.展开更多
In order to evaluate the seismic reliability of water distribution system and make rehabilitation decisions correspondingly, it is necessary to assess pipelines damage states and conduct functional analysis based on p...In order to evaluate the seismic reliability of water distribution system and make rehabilitation decisions correspondingly, it is necessary to assess pipelines damage states and conduct functional analysis based on pipe leakage model. When an earthquake occurred, the water distribution system kept serving with leakage. By adding a virtual node at the centre of the pipeline with leakage, an efficient approach to pressure-driven analysis was developed for simulating a variety of low relative scenarios, and a hydraulic leakage model was also built to perform hydraulic analysis of the water supply network with seismic damage. Then the mean-first-order-second-moment method was used to analyse the seismic serviceability of the water distribution system. According to the assessment analysis, pipes that were destroyed or in heavy leakage were isolated and repaired emergently, which improved the water supply capability of the network and would constitute the basis for enhancing seismic reliability of the system. The proposed approach to seismic reliability and rehabilitation decision analysis on water distribution system is demonstrated effective through a case study.展开更多
This paper presents a description and analysis of the most important models to predict each of the Road User Costs components (Vehicle Operating Costs, Accident Costs and Value of Time) and proposes a model for esti...This paper presents a description and analysis of the most important models to predict each of the Road User Costs components (Vehicle Operating Costs, Accident Costs and Value of Time) and proposes a model for estimating RUC components suitable for the Portuguese road network. These results are part of a research which aimed to obtain a Road User Cost Model to be used as a tool in road management systems. This model is different from other models by the fact that it includes a simple formulation that allows calibration and calculation of cost parameters, for any year, in a simple and fast way, providing trustworthy results. The required data is already available in Portuguese institutions, allowing periodic revision of cost parameters to insure accuracy.展开更多
基金Project(50278062) supported by the National Natural Science Foundation of ChinaProject(003611611)supported by the Natural Science Foundation of Tianjin, China
文摘The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic model for a network under a local pipe failure was established by the statistical regression. After the operation objectives under a local pipe failure were determined, the optimal operation model was developed and solved by the genetic algorithm. The program was developed and examined by a city distribution network. The optimal operation alternative shows that the electricity cost is saved approximately 11%, the income of the water corporation is increased approximately 5%, and the pressure in the water distribution network is distributed evenly to ensure the network safe operation. Therefore, the proposed method for optimal operation under local pipe failure is feasible and cost-effective.
基金Supported by National Natural Science Foundation of China(No.50478094)
文摘In order to evaluate the seismic reliability of water distribution system and make rehabilitation decisions correspondingly, it is necessary to assess pipelines damage states and conduct functional analysis based on pipe leakage model. When an earthquake occurred, the water distribution system kept serving with leakage. By adding a virtual node at the centre of the pipeline with leakage, an efficient approach to pressure-driven analysis was developed for simulating a variety of low relative scenarios, and a hydraulic leakage model was also built to perform hydraulic analysis of the water supply network with seismic damage. Then the mean-first-order-second-moment method was used to analyse the seismic serviceability of the water distribution system. According to the assessment analysis, pipes that were destroyed or in heavy leakage were isolated and repaired emergently, which improved the water supply capability of the network and would constitute the basis for enhancing seismic reliability of the system. The proposed approach to seismic reliability and rehabilitation decision analysis on water distribution system is demonstrated effective through a case study.
文摘This paper presents a description and analysis of the most important models to predict each of the Road User Costs components (Vehicle Operating Costs, Accident Costs and Value of Time) and proposes a model for estimating RUC components suitable for the Portuguese road network. These results are part of a research which aimed to obtain a Road User Cost Model to be used as a tool in road management systems. This model is different from other models by the fact that it includes a simple formulation that allows calibration and calculation of cost parameters, for any year, in a simple and fast way, providing trustworthy results. The required data is already available in Portuguese institutions, allowing periodic revision of cost parameters to insure accuracy.