This paper introduces a newly developed vacuum Plume effects Experimental System(PES) used for plume effect tests of rocket engines and vacuum heat tests of satellites. The design level, manufacturing technique, and t...This paper introduces a newly developed vacuum Plume effects Experimental System(PES) used for plume effect tests of rocket engines and vacuum heat tests of satellites. The design level, manufacturing technique, and testing capabilities of the PES have reached a highly advanced level at home and abroad. The PES mainly consists of a vacuum chamber, vacuum acquisition system, nitrogen system, helium system, and parameter measurement system. A breakthrough was obtained on the Large Scale Cryo-Pumping System, which was based on a combined liquid nitrogen and liquid helium heat sink. An internal cryopump with a limiting temperature of 4.2 K and an efficient absorption area of 305 m2 was developed. The absorption capability of the cryopump was above 7×107 L/s. Vacuum plume tests were performed in the temperature ranges of ambient temperature, liquid nitrogen, and liquid helium. The experimental results showed that the plume test capability of PES is higher than that of similar foreign equipment STG and CHAFF-4. For 2 g/s and 117 N rocket engines, the dynamic vacuum degree of environment was 8.0×10?4 Pa(approximately 137 km height) and 1.1×10?2 Pa(approximately 106 km height), respectively.展开更多
When the liquid propellant thruster works,its plume field would contain many propellant liquid droplets,especially at pulse state.Liquid droplets may move along with the gas flow and deposit on the components of space...When the liquid propellant thruster works,its plume field would contain many propellant liquid droplets,especially at pulse state.Liquid droplets may move along with the gas flow and deposit on the components of spacecraft as contamination.The simulation of the plume field involving the gas molecules and liquid droplets is an important part in contamination studies of thruster plume.Based on the PWS software developed by Beihang University(BUAA),axial-symmetric two-phase direct simulation Monte Carlo(DSMC) method is used with the liquid droplet taken as a kind of solid particle.The computation of gas-to-particle effect and gas reflection on the particle surface are decoupled.The inter-particle collision is also considered.The gas parameters at nozzle exit of 120N engine after 20 ms pulse work are taken as the entrance condition of the numerical simulation.Four test cases are conducted for comparison of different collision modules.Simulation results show that the effects of liquid propellant droplets mainly concentrate near the axis line of engine.The particle-to-gas collision would cause evident differences in the gas field and subtle differences in the particle phase.The liquid droplets in the plume field are generally accelerated and convected by the gas molecules.The DSMC method is proved to be a feasible solver to numerically simulate the two-phase flow involving solid phase and rarefied gas flow.展开更多
基金supported by the Space Cooperation Project between Russia and China
文摘This paper introduces a newly developed vacuum Plume effects Experimental System(PES) used for plume effect tests of rocket engines and vacuum heat tests of satellites. The design level, manufacturing technique, and testing capabilities of the PES have reached a highly advanced level at home and abroad. The PES mainly consists of a vacuum chamber, vacuum acquisition system, nitrogen system, helium system, and parameter measurement system. A breakthrough was obtained on the Large Scale Cryo-Pumping System, which was based on a combined liquid nitrogen and liquid helium heat sink. An internal cryopump with a limiting temperature of 4.2 K and an efficient absorption area of 305 m2 was developed. The absorption capability of the cryopump was above 7×107 L/s. Vacuum plume tests were performed in the temperature ranges of ambient temperature, liquid nitrogen, and liquid helium. The experimental results showed that the plume test capability of PES is higher than that of similar foreign equipment STG and CHAFF-4. For 2 g/s and 117 N rocket engines, the dynamic vacuum degree of environment was 8.0×10?4 Pa(approximately 137 km height) and 1.1×10?2 Pa(approximately 106 km height), respectively.
文摘When the liquid propellant thruster works,its plume field would contain many propellant liquid droplets,especially at pulse state.Liquid droplets may move along with the gas flow and deposit on the components of spacecraft as contamination.The simulation of the plume field involving the gas molecules and liquid droplets is an important part in contamination studies of thruster plume.Based on the PWS software developed by Beihang University(BUAA),axial-symmetric two-phase direct simulation Monte Carlo(DSMC) method is used with the liquid droplet taken as a kind of solid particle.The computation of gas-to-particle effect and gas reflection on the particle surface are decoupled.The inter-particle collision is also considered.The gas parameters at nozzle exit of 120N engine after 20 ms pulse work are taken as the entrance condition of the numerical simulation.Four test cases are conducted for comparison of different collision modules.Simulation results show that the effects of liquid propellant droplets mainly concentrate near the axis line of engine.The particle-to-gas collision would cause evident differences in the gas field and subtle differences in the particle phase.The liquid droplets in the plume field are generally accelerated and convected by the gas molecules.The DSMC method is proved to be a feasible solver to numerically simulate the two-phase flow involving solid phase and rarefied gas flow.