The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract ...The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract these impulsive components caused by faults,particularly early faults,from the measured vibration signals.To capture the high-level structure of impulsive components embedded in measured vibration signals,a dictionary learning method called shift-invariant K-means singular value decomposition(SI-K-SVD)dictionary learning is used to detect the early faults of gear-box bearings.Although SI-K-SVD is more flexible and adaptable than existing methods,the improper selection of two SI-K-SVD-related parameters,namely,the number of iterations and the pattern lengths,has an adverse influence on fault detection performance.Therefore,the sparsity of the envelope spectrum(SES)and the kurtosis of the envelope spectrum(KES)are used to select these two key parameters,respectively.SI-K-SVD with the two selected optimal parameter values,referred to as optimal parameter SI-K-SVD(OP-SI-K-SVD),is proposed to detect gear-box bearing faults.The proposed method is verified by both simulations and an experiment.Compared to the state-of-the-art methods,namely,empirical model decomposition,wavelet transform and K-SVD,OP-SI-K-SVD has better performance in diagnosing the early faults of a gear-box bearing.展开更多
The difficulty to select the best system parameters restricts the engineering application of stochastic resonance (SR). An adaptive cascade stochastic resonance (ACSR) is proposed in the present study. The propose...The difficulty to select the best system parameters restricts the engineering application of stochastic resonance (SR). An adaptive cascade stochastic resonance (ACSR) is proposed in the present study. The proposed method introduces correlation theory into SR, and uses correlation coefficient of the input signals and noise as a weight to construct the weighted signal-to-noise ratio (WSNR) index. The influence of high frequency noise is alleviated and the signal-to-noise ratio index used in traditional SR is improved accordingly. The ACSR with WSNR can obtain optimal parameters adaptively. And it is not necessary to predict the exact frequency of the target signal. In addition, through the secondary utilization of noise, ACSR makes the signal output waveforrn smoother and the fluctuation period more obvious. Simulation example and engineering application of gearbox fault diagnosis demonstrate the effectiveness and feasibility of the proposed method.展开更多
基金Project(51875481) supported by the National Natural Science Foundation of ChinaProject(2682017CX011) supported by the Fundamental Research Foundations for the Central Universities,China+2 种基金Project(2017M623009) supported by the China Postdoctoral Science FoundationProject(2017YFB1201004) supported by the National Key Research and Development Plan for Advanced Rail Transit,ChinaProject(2019TPL_T08) supported by the Research Fund of the State Key Laboratory of Traction Power,China
文摘The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract these impulsive components caused by faults,particularly early faults,from the measured vibration signals.To capture the high-level structure of impulsive components embedded in measured vibration signals,a dictionary learning method called shift-invariant K-means singular value decomposition(SI-K-SVD)dictionary learning is used to detect the early faults of gear-box bearings.Although SI-K-SVD is more flexible and adaptable than existing methods,the improper selection of two SI-K-SVD-related parameters,namely,the number of iterations and the pattern lengths,has an adverse influence on fault detection performance.Therefore,the sparsity of the envelope spectrum(SES)and the kurtosis of the envelope spectrum(KES)are used to select these two key parameters,respectively.SI-K-SVD with the two selected optimal parameter values,referred to as optimal parameter SI-K-SVD(OP-SI-K-SVD),is proposed to detect gear-box bearing faults.The proposed method is verified by both simulations and an experiment.Compared to the state-of-the-art methods,namely,empirical model decomposition,wavelet transform and K-SVD,OP-SI-K-SVD has better performance in diagnosing the early faults of a gear-box bearing.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2011CB706805)the National Natural Science Foundation of China (Grant No. 51035007)
文摘The difficulty to select the best system parameters restricts the engineering application of stochastic resonance (SR). An adaptive cascade stochastic resonance (ACSR) is proposed in the present study. The proposed method introduces correlation theory into SR, and uses correlation coefficient of the input signals and noise as a weight to construct the weighted signal-to-noise ratio (WSNR) index. The influence of high frequency noise is alleviated and the signal-to-noise ratio index used in traditional SR is improved accordingly. The ACSR with WSNR can obtain optimal parameters adaptively. And it is not necessary to predict the exact frequency of the target signal. In addition, through the secondary utilization of noise, ACSR makes the signal output waveforrn smoother and the fluctuation period more obvious. Simulation example and engineering application of gearbox fault diagnosis demonstrate the effectiveness and feasibility of the proposed method.