期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
加权局部方差优化初始簇中心的K-means算法 被引量:11
1
作者 蔡宇浩 梁永全 +2 位作者 樊建聪 李璇 刘文华 《计算机科学与探索》 CSCD 北大核心 2016年第5期732-741,共10页
在传统K-means算法中,初始簇中心选择的随机性,导致聚类结果随不同的聚类中心而不同。因此出现了很多簇中心的选择方法,但是很多已有的簇中心选择算法,其聚类结果受参数调节的影响较大。针对这一问题,提出了一种新的初始簇中心选择算法... 在传统K-means算法中,初始簇中心选择的随机性,导致聚类结果随不同的聚类中心而不同。因此出现了很多簇中心的选择方法,但是很多已有的簇中心选择算法,其聚类结果受参数调节的影响较大。针对这一问题,提出了一种新的初始簇中心选择算法,称为WLV-K-means(weighted local variance K-means)。该算法采用加权局部方差度量样本的密度,以更好地发现密度高的样本,并利用改进的最大最小法,启发式地选择簇初始中心点。在UCI数据集上的实验结果表明,WLV-K-means算法不仅能够取得较好的聚类结果,而且受参数变化的影响较小,有更加稳定的表现。 展开更多
关键词 K-MEANS算法 方差 加权 最大最小法 簇初始中心点
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部