Privacy is becoming one of the most notable challenges threatening wireless sensor networks(WSNs).Adversaries may use RF(radio frequency) localization techniques to perform hop-by-hop trace back to the source sensor...Privacy is becoming one of the most notable challenges threatening wireless sensor networks(WSNs).Adversaries may use RF(radio frequency) localization techniques to perform hop-by-hop trace back to the source sensor's location.A multiple k-hop clusters based routing strategy(MHCR) is proposed to preserve source-location privacy as well as enhance energy efficiency for WSNs.Owing to the inherent characteristics of intra-cluster data aggregation,each sensor of the interference clusters is able to act as a fake source to confuse the adversary.Moreover,dummy traffic could be filtered efficiently by the cluster heads during the data aggregation,ensuring no energy consumption be burdened in the hotspot of the network.Through careful analysis and calculation on the distribution and the number of interference clusters,energy efficiency is significantly enhanced without reducing the network lifetime.Finally,the security and delay performance of MHCR scheme are theoretically analyzed.Extensive analysis and simulation results demonstrate that MHCR scheme can improve both the location privacy security and energy efficiency markedly,especially in large-scale WSNs.展开更多
Wireless Sensor Networks (WSNs) have been applied in many different areas. Energy efficient algorithms and protocols have become one of the most challenging issues for WSN. Many researchers focused on developing energ...Wireless Sensor Networks (WSNs) have been applied in many different areas. Energy efficient algorithms and protocols have become one of the most challenging issues for WSN. Many researchers focused on developing energy efficient clustering algorithms for WSN, but less research has been concerned in the mobile User Equipment (UE) acting as a Cluster Head (CH) for data transmission between cellular networks and WSNs. In this paper, we propose a cellular-assisted UE CH selection algorithm for the WSN, which considers several parameters to choose the optimal UE gateway CH. We analyze the energy cost of data transmission from a sensor node to the next node or gateway and calculate the whole system energy cost for a WSN. Simulation results show that better system performance, in terms of system energy cost and WSNs life time, can be achieved by using interactive optimization with cellular networks.展开更多
基金Project(2013DFB10070)supported by the International Science & Technology Cooperation Program of ChinaProject(2012GK4106)supported by the Hunan Provincial Science & Technology Program,ChinaProject(12MX15)supported by the Mittal Innovation Project of Central South University,China
文摘Privacy is becoming one of the most notable challenges threatening wireless sensor networks(WSNs).Adversaries may use RF(radio frequency) localization techniques to perform hop-by-hop trace back to the source sensor's location.A multiple k-hop clusters based routing strategy(MHCR) is proposed to preserve source-location privacy as well as enhance energy efficiency for WSNs.Owing to the inherent characteristics of intra-cluster data aggregation,each sensor of the interference clusters is able to act as a fake source to confuse the adversary.Moreover,dummy traffic could be filtered efficiently by the cluster heads during the data aggregation,ensuring no energy consumption be burdened in the hotspot of the network.Through careful analysis and calculation on the distribution and the number of interference clusters,energy efficiency is significantly enhanced without reducing the network lifetime.Finally,the security and delay performance of MHCR scheme are theoretically analyzed.Extensive analysis and simulation results demonstrate that MHCR scheme can improve both the location privacy security and energy efficiency markedly,especially in large-scale WSNs.
基金Supported by the National Science and Technology Major Projects of China (No.2011ZX03005-003-02)Shanghai Natural Science Foundation (No.11ZR-1435100)Shanghai Science and Technology Innovation Program(No.11DZ0512500, 12511503300, 12DZ2250200)
文摘Wireless Sensor Networks (WSNs) have been applied in many different areas. Energy efficient algorithms and protocols have become one of the most challenging issues for WSN. Many researchers focused on developing energy efficient clustering algorithms for WSN, but less research has been concerned in the mobile User Equipment (UE) acting as a Cluster Head (CH) for data transmission between cellular networks and WSNs. In this paper, we propose a cellular-assisted UE CH selection algorithm for the WSN, which considers several parameters to choose the optimal UE gateway CH. We analyze the energy cost of data transmission from a sensor node to the next node or gateway and calculate the whole system energy cost for a WSN. Simulation results show that better system performance, in terms of system energy cost and WSNs life time, can be achieved by using interactive optimization with cellular networks.