The growth and thermal stability of Au clusters on a partially-reduced rutile TiO2 (110)-1 × 1 surface were investigated by high-resolution photoelectron spectroscopy using synchrotron- radiation-light. The val...The growth and thermal stability of Au clusters on a partially-reduced rutile TiO2 (110)-1 × 1 surface were investigated by high-resolution photoelectron spectroscopy using synchrotron- radiation-light. The valence-band photoelectron spectroscopy results demonstrate that the Ti^3+3d feature attenuates quickly with the initial deposition of Au clusters, implying that Au clusters nucleate at the oxygen vacancy sites. The Au4f core-level photoelectron spectroscopy results directly prove the existence of charge transfer from oxygen vacancies to Au clusters. The thermal stability of Au clusters on the partially-reduced and stoichiometric TiO2(110) surfaces was also comparatively investigated by the annealing experiments. With the same film thickness, Au clusters are more thermally stable on the partially-reduced TiO2(110) surface than on the stoichiometric TiO2(110) surface. Meanwhile, large Au nanoparticles are more thermally stable than fine Au nanoparticles.展开更多
We describe a collinear velocity-map photoelectron imaging spectrometer, which combines a Wiley-McLaren time-of-flight mass analyzer with a dual-valve laser vaporization source for investigating size-selected cluster ...We describe a collinear velocity-map photoelectron imaging spectrometer, which combines a Wiley-McLaren time-of-flight mass analyzer with a dual-valve laser vaporization source for investigating size-selected cluster and reaction intermediate anions. To generate the reaction anions conveniently, two pulsed valves and a reaction channel are employed instead of premixing carrier gas. The collinear photoelectron imaging spectrometer adopts modified velocity-map electrostatic lens, and provides kinetic energy resolution better than 3%. The performance of the instrument is demonstrated on the photodetachment of Si4^- at 532 and 355 nm, and SiaC^- at 532 nm, respectively. In both cases, photoelectron spectra and anisotropy parameters are obtained from the images. For Si4^-, the spectra show two well- resolved vibrational progressions which correspond to the ground state and the first excited state of the neutral Si4 with peak spacing of 330 and 312 cm^-1, respectively. Preliminary results suggest that the apparatus is a powerful tool for characterizing the electronic structure and photodetachment dynamics of cluster anions.展开更多
The influence of radiative cooling on the unimolecular decay rates of free, hot clusters and molecules with unspecified excitation energies is quantified. Two different regimes, dedined by the magnitude of the energy ...The influence of radiative cooling on the unimolecular decay rates of free, hot clusters and molecules with unspecified excitation energies is quantified. Two different regimes, dedined by the magnitude of the energy of the photons emitted, are identified and the boundary between them is given. The boundary is determined in terms of the photon emission rate constants and thermal properties of the particles. Also the abundance spectra are calculated for the continuous cooling case, corresponding to small photon energies. The two regimes correspond to continuous cooling and single photon quenching of the unimolecular decay. The radiative effect can be parametrized by a redefinition of the time each individual cluster has available to undergo evaporation, expressed by an effective radiative time constant.展开更多
The growth of Fe nanoclusters oN the Ge(001) surface has been studied using low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM results indicate that Fe nucl...The growth of Fe nanoclusters oN the Ge(001) surface has been studied using low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM results indicate that Fe nucleates on the Ge(001) surface, forming well-ordered nanoclusters of uniform size. Depending on the preparation conditions, two types of nanoclusters were observed having either four or sixteen Fe atoms within a nanocluster. The results were confirmed by DFT calculations. Annealing the nanoclusters at 420 K leads to the formation of nanorow structures, due to cluster mobility at such temperature. The Fe nanoclusters and nanorow structures formed on the Ge(001) surface show a superparamagnetic behaviour as measured by X-ray magnetic circular dichroism.展开更多
round-the-clock solar observations with full-disk coverage of vector magnetograms and multi-wavelength images demonstrate that solar active regions(ARs) are ultimately connected with magnetic field. Often two or more ...round-the-clock solar observations with full-disk coverage of vector magnetograms and multi-wavelength images demonstrate that solar active regions(ARs) are ultimately connected with magnetic field. Often two or more ARs are clustered, creating a favorable magnetic environment for the onset of coronal mass ejections(CMEs). In this work, we describe a new type of magnetic complex: cluster of solar ARs. An AR cluster is referred to as the close connection of two or more ARs which are located in nearly the same latitude and a narrow span of longitude. We illustrate three examples of AR clusters, each of which has two ARs connected and formed a common dome of magnetic flux system. They are clusters of NOAA(i.e., National Oceanic and Atmospheric Administration) ARs 11226 & 11227, 11429 & 11430, and 11525 & 11524. In these AR clusters, CME initiations were often tied to the instability of the magnetic structures connecting two partner ARs, in the form of inter-connecting loops and/or channeling filaments between the two ARs. We show the evidence that, at least, some of the flare/CMEs in an AR cluster are not a phenomenon of a single AR, but the result of magnetic interaction in the whole AR cluster. The observations shed new light on understanding the mechanism(s) of solar activity. Instead of the simple bipolar topology as suggested by the so-called standard flare model, a multi-bipolar magnetic topology is more common to host the violent solar activity in solar atmosphere.展开更多
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20773113 and No.20803072), the Hundred Talent Program of Chinese Academy of Sciences, the MOE Program for Changjiang Scholars and Innovative Research Team (No.IRT0756), and the MPG-CAS Partner-group Program.
文摘The growth and thermal stability of Au clusters on a partially-reduced rutile TiO2 (110)-1 × 1 surface were investigated by high-resolution photoelectron spectroscopy using synchrotron- radiation-light. The valence-band photoelectron spectroscopy results demonstrate that the Ti^3+3d feature attenuates quickly with the initial deposition of Au clusters, implying that Au clusters nucleate at the oxygen vacancy sites. The Au4f core-level photoelectron spectroscopy results directly prove the existence of charge transfer from oxygen vacancies to Au clusters. The thermal stability of Au clusters on the partially-reduced and stoichiometric TiO2(110) surfaces was also comparatively investigated by the annealing experiments. With the same film thickness, Au clusters are more thermally stable on the partially-reduced TiO2(110) surface than on the stoichiometric TiO2(110) surface. Meanwhile, large Au nanoparticles are more thermally stable than fine Au nanoparticles.
基金ACKNOWLEDGMENTS We thank Professor Hai-yang Li for simulation electron trajectory, and H. Reisler for providing the image analysis software. This work was supported by the National Natural Science Foundation of China (No.20773126), the Ministry of Science and Technology of China, and the Chinese Academy of Sciences.
文摘We describe a collinear velocity-map photoelectron imaging spectrometer, which combines a Wiley-McLaren time-of-flight mass analyzer with a dual-valve laser vaporization source for investigating size-selected cluster and reaction intermediate anions. To generate the reaction anions conveniently, two pulsed valves and a reaction channel are employed instead of premixing carrier gas. The collinear photoelectron imaging spectrometer adopts modified velocity-map electrostatic lens, and provides kinetic energy resolution better than 3%. The performance of the instrument is demonstrated on the photodetachment of Si4^- at 532 and 355 nm, and SiaC^- at 532 nm, respectively. In both cases, photoelectron spectra and anisotropy parameters are obtained from the images. For Si4^-, the spectra show two well- resolved vibrational progressions which correspond to the ground state and the first excited state of the neutral Si4 with peak spacing of 330 and 312 cm^-1, respectively. Preliminary results suggest that the apparatus is a powerful tool for characterizing the electronic structure and photodetachment dynamics of cluster anions.
文摘The influence of radiative cooling on the unimolecular decay rates of free, hot clusters and molecules with unspecified excitation energies is quantified. Two different regimes, dedined by the magnitude of the energy of the photons emitted, are identified and the boundary between them is given. The boundary is determined in terms of the photon emission rate constants and thermal properties of the particles. Also the abundance spectra are calculated for the continuous cooling case, corresponding to small photon energies. The two regimes correspond to continuous cooling and single photon quenching of the unimolecular decay. The radiative effect can be parametrized by a redefinition of the time each individual cluster has available to undergo evaporation, expressed by an effective radiative time constant.
基金This work was supported by Science Foundation Ireland (Principal Investigator grant No. 06/IN.1/191 and Research Frontiers Programme grant No. 07/ RFP/MASF185). The authors wish to thank Trinity College High Performance Cluster, funded by the Higher Education Authority under the Program for Research in Third Level Institutes, for the use of their computing facilities.
文摘The growth of Fe nanoclusters oN the Ge(001) surface has been studied using low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM results indicate that Fe nucleates on the Ge(001) surface, forming well-ordered nanoclusters of uniform size. Depending on the preparation conditions, two types of nanoclusters were observed having either four or sixteen Fe atoms within a nanocluster. The results were confirmed by DFT calculations. Annealing the nanoclusters at 420 K leads to the formation of nanorow structures, due to cluster mobility at such temperature. The Fe nanoclusters and nanorow structures formed on the Ge(001) surface show a superparamagnetic behaviour as measured by X-ray magnetic circular dichroism.
基金supported by the National Natural Science Foundation of China(Grant Nos.11221063,11373004,11322329,41404150,and 11303049)Ministry of Science and Technology(Grant No.2011CB811403)
文摘round-the-clock solar observations with full-disk coverage of vector magnetograms and multi-wavelength images demonstrate that solar active regions(ARs) are ultimately connected with magnetic field. Often two or more ARs are clustered, creating a favorable magnetic environment for the onset of coronal mass ejections(CMEs). In this work, we describe a new type of magnetic complex: cluster of solar ARs. An AR cluster is referred to as the close connection of two or more ARs which are located in nearly the same latitude and a narrow span of longitude. We illustrate three examples of AR clusters, each of which has two ARs connected and formed a common dome of magnetic flux system. They are clusters of NOAA(i.e., National Oceanic and Atmospheric Administration) ARs 11226 & 11227, 11429 & 11430, and 11525 & 11524. In these AR clusters, CME initiations were often tied to the instability of the magnetic structures connecting two partner ARs, in the form of inter-connecting loops and/or channeling filaments between the two ARs. We show the evidence that, at least, some of the flare/CMEs in an AR cluster are not a phenomenon of a single AR, but the result of magnetic interaction in the whole AR cluster. The observations shed new light on understanding the mechanism(s) of solar activity. Instead of the simple bipolar topology as suggested by the so-called standard flare model, a multi-bipolar magnetic topology is more common to host the violent solar activity in solar atmosphere.