The radial basis function (RBF), a kind of neural networks algorithm, is adopted to select clusterheads. It has many advantages such as simple parallel distributed computation, distributed storage, and fast learning...The radial basis function (RBF), a kind of neural networks algorithm, is adopted to select clusterheads. It has many advantages such as simple parallel distributed computation, distributed storage, and fast learning. Four factors related to a node becoming a cluster-head are drawn by analysis, which are energy ( energy available in each node), number (the number of neighboring nodes), centrality ( a value to classify the nodes based on the proximity how central the node is to the cluster), and location (the distance between the base station and the node). The factors are as input variables of neural networks and the output variable is suitability that is the degree of a node becoming a cluster head. A group of cluster-heads are selected according to the size of network. Then the base station broadcasts a message containing the list of cluster-heads' IDs to all nodes. After that, each cluster-head announces its new status to all its neighbors and sets up a new cluster. If a node around it receives the message, it registers itself to be a member of the cluster. After identifying all the members, the cluster-head manages them and carries out data aggregation in each cluster. Thus data flowing in the network decreases and energy consumption of nodes decreases accordingly. Experimental results show that, compared with other algorithms, the proposed algorithm can significantly increase the lifetime of the sensor network.展开更多
基金The National Natural Science Foundation of China(No.60472053),the Natural Science Foundation of Jiangsu Province(No.BK2003055),the Specialized Research Fund for the Doctoral Pro-gram of Higher Education (No.20030286017).
文摘The radial basis function (RBF), a kind of neural networks algorithm, is adopted to select clusterheads. It has many advantages such as simple parallel distributed computation, distributed storage, and fast learning. Four factors related to a node becoming a cluster-head are drawn by analysis, which are energy ( energy available in each node), number (the number of neighboring nodes), centrality ( a value to classify the nodes based on the proximity how central the node is to the cluster), and location (the distance between the base station and the node). The factors are as input variables of neural networks and the output variable is suitability that is the degree of a node becoming a cluster head. A group of cluster-heads are selected according to the size of network. Then the base station broadcasts a message containing the list of cluster-heads' IDs to all nodes. After that, each cluster-head announces its new status to all its neighbors and sets up a new cluster. If a node around it receives the message, it registers itself to be a member of the cluster. After identifying all the members, the cluster-head manages them and carries out data aggregation in each cluster. Thus data flowing in the network decreases and energy consumption of nodes decreases accordingly. Experimental results show that, compared with other algorithms, the proposed algorithm can significantly increase the lifetime of the sensor network.