Microstructure refinement of a dual phase titanium alloy, Ti-3AI-4.5V-5Mo, by severe room temperature compression was investigated. Nanocrystalline grains were observed in the sample with 75% reduction, in which the g...Microstructure refinement of a dual phase titanium alloy, Ti-3AI-4.5V-5Mo, by severe room temperature compression was investigated. Nanocrystalline grains were observed in the sample with 75% reduction, in which the grain sizes of a phase and β phase were approximately 50 and 100 nm. Conversely, the average thicknesses of a phase and β phase in as-received microstructure were measured to be 0.7 and 0.5 μm, respectively. TEM and XRD methods were used to analyze the microstructure and texture changes after severe deformation. Microstructure refinement was deduced to the complex interaction among slip dislocations in the a phase, the complex interaction among slip dislocations and martensites in the β phases. In addition, the interaction between the a phase and the β phase also contributed to the microstructure refinement.展开更多
Transparent, flexible electronic skin holds a wide range of applications in robotics, humanmachine interfaces, artificial intelligence, prosthetics, and health monitoring. Silver nanowire are mechanically flexible and...Transparent, flexible electronic skin holds a wide range of applications in robotics, humanmachine interfaces, artificial intelligence, prosthetics, and health monitoring. Silver nanowire are mechanically flexible and robust, which exhibit great potential in transparent and electricconducting thin film. Herein, we report on a silver-nanowire spray-coating and electrodemicrostructure replicating strategy to construct a transparent, flexible, and sensitive electronic skin device. The electronic skin device shows highly sensitive piezo-capacitance response to pressure. It is found that micropatterning the surface of dielectric layer polyurethane elastomer by replicating from microstructures of natural-existing surfaces such as lotus leaf, silk, and frosted glass can greatly enhance the piezo-capacitance performance of the device. The microstructured pressure sensors based on silver nanowire exhibit good transparency, excellent flexibility, wide pressure detection range (0-150 kPa), and high sensitivity (1.28 kPa-1).展开更多
Freshwater shortage is the main problem in Heilonggang lower-lying plain, while a considerable amount of underground saline water is available. We wanted to find an effective way to use the brackish water in winter wh...Freshwater shortage is the main problem in Heilonggang lower-lying plain, while a considerable amount of underground saline water is available. We wanted to find an effective way to use the brackish water in winter wheat production. Surface mulch has significant effect in reducing evaporation and decreasing soil salinity level. This research was aimed at comparing the effect of different mulch materials on winter wheat production. The experiment was conducted during 2002-2003 and 2003-2004. Four treatments were setup: (1) no mulch, (2) mulch with plastic film, (3) mulch with corn straw, (4) mulch with concrete slab between the rows. The result indicated that concrete mulch and straw mulch was effective in conserving soil water compared to plastic film mulch which increased soil temperature. Concrete mulch decreases surface soil salinity better in comparison to other mulches used. Straw mulch conserved more soil water but decreased wheat grain yield probably due to low temperature. Concrete mulch had similar effect with plastic film mulch on promoting winter wheat development and growth.展开更多
The extensive existence of microplastics in the marine environment and the various definite and indefinite harm to the living creatures have been paid much attention.In this paper,the definition,source and pollution o...The extensive existence of microplastics in the marine environment and the various definite and indefinite harm to the living creatures have been paid much attention.In this paper,the definition,source and pollution of micro(Nano)plastics in marine environment are reviewed.The related literatures are retrieved by using big data platform,the distribution characteristics of micro(Nano)plastics in the marine environment,control measures and so on,and the characteristics of key words making,resource distribution and contribution rate of research institutions are comprehensively analyzed.It provides the technical support for the scientific management of micro(Nano)plastics in the future.展开更多
Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electro...Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electrochemical energy storage system. A novel failure prediction modeling method of lithium ion battery based on distributed parameter estimation and single particle model is proposed in this work. Lithium ion concentration in the anode of lithium ion battery is an unmeasurable distributed variable. Failure prediction system can estimate lithium ion concentration online, track the failure residual which is the difference between the estimated value and the ideal value. The precaution signal will be triggered when the failure residual is beyond the predefined failure precaution threshold, and the failure countdown prediction module will be activated. The remaining time of the severe failure threshold can be estimated by the failure countdown prediction module according to the changing rate of the failure residual. A simulation example verifies that lithium ion concentration in the anode of lithium ion battery can be estimated exactly and effectively by the failure prediction model. The precaution signal can be triggered reliably, and the remaining time of the severe failure can be forecasted accurately by the failure countdown prediction module.展开更多
Based on molecular dynamics(MD)simulation,the mechanisms of plastic anisotropy in nanotwinned polycrystalline copper with{111}texture during tensile deformation were systematically studied from the aspects of Schmid f...Based on molecular dynamics(MD)simulation,the mechanisms of plastic anisotropy in nanotwinned polycrystalline copper with{111}texture during tensile deformation were systematically studied from the aspects of Schmid factor of the dominant slip system and the dislocation mechanism.The results show that the Schmid factor of dominated slip system is altered by changing the inclining angle of the twin boundaries(TBs),while the yield stress or flow stress does not strictly follow the Schmid law.There exist hard and soft orientations involving different dislocation mechanisms during the tensile deformation.The strengthening mechanism of hard orientation lies in the fact that there exist interactions between the dislocations and the TBs during plastic deformation,which leads to the dislocation blocking and reactions.The softening mechanism of soft orientation lies in the fact that there is no interaction between the dislocations and the TBs because only the slip systems parallel to the TBs are activated and the dislocations slip on the planes parallel to the TBs.It is concluded that the plastic anisotropy in the nanotwinned polycrystalline copper with{111}texture is aroused by the combination effect of the Schmid factor of dominated slip system and the dislocation mechanism.展开更多
The effects of plastic inulching on soil aeralion at the soil dcpth uf 0-100 cm were studied in a corn tield.The resnlts indicated that the CO_2 concentration of unmulched soil in the 0-100 cm layer layer ranged from ...The effects of plastic inulching on soil aeralion at the soil dcpth uf 0-100 cm were studied in a corn tield.The resnlts indicated that the CO_2 concentration of unmulched soil in the 0-100 cm layer layer ranged from 0.00 1to 0.016 m ̄3/m ̄3, and that of mulched soil 0.002 to 0.018m ̄3/m ̄3, about 32.39% higher than the forrner on theaverage. Such a CO_2 concentration in the soil air is still suitable for crop growth. The O_2 concentration wasinversely correlated with CO_2 concentrat ion in the soil air ( unmulching r=-0.92 ̄(**), mulching r=-0. 79 ̄*). O_2concentration ranged from 0. 1 1 to 0. 17 m ̄3/m ̄3 in the mulched soil and 0. 1 3 to 0. 18 m ̄3 /m ̄3 in the unmulchedsoil. By contrast, N_2 concentration in soil air remained relatively steady, with no difference between the twotreatments. The relationship between the soil respiratory intensity and the depth of a soil layer appeared tobe a power function. At the layer of 0-20 cm, the soil respiration intensity in the mulched soil was obviouslyhigher than that in the unmulched. Plastic mulching could also affect soil structure. In comparison withthe unmulched soil, the content of >0.25 mm aggregate and 0.05-0.001 mm microaggregate in the mulched soil was reduced by 82.1% and 35.8%, respectively; the soil total porosity, gaseous phase rate and aerationporosity in the depth of 10-20 cm were reduced by 2.85%, 19.89% and 26.54% respectively, but contrary at the depth of 0-10 cm.展开更多
Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed t...Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.展开更多
The plastic deformation and the ultrahigh strength of metals at the nanoscale have been predicted to be controlled by surface dislocation nucleation. In situ quantitative tensile tests on individual 〈111〉 single cry...The plastic deformation and the ultrahigh strength of metals at the nanoscale have been predicted to be controlled by surface dislocation nucleation. In situ quantitative tensile tests on individual 〈111〉 single crystalline ultrathin gold nanowires have been performed and significant load drops observed in stress-strain curves suggest the occurrence of such dislocation nucleation. High-resolution transmission electron microscopy (HRTEM) imaging and molecular dynamics simulations demonstrated that plastic deformation was indeed initiated and dominated by surface dislocation nucleation, mediating ultrahigh yield and fracture strength in sub-lO-nm gold nanowires.展开更多
Nanotwinned diamond(nt-diamond),which demonstrates unprecedented hardness and stability,is synthesized through the martensitic transformation of onion carbons at high pressure and high temperature(HPHT).Its hardne...Nanotwinned diamond(nt-diamond),which demonstrates unprecedented hardness and stability,is synthesized through the martensitic transformation of onion carbons at high pressure and high temperature(HPHT).Its hardness and stability increase with decreasing twin thickness at the nanoscale.However,the formation mechanism of nanotwinning substructures within diamond nanograins is not well established.Here,we characterize the nanotwins in nt-diamonds synthesized under different HPHT conditions.Our observation shows that the nanotwin thickness reaches a minimum at ~20 GPa,below which phase-transformation twins and deformation twins coexist.Then,we use the density-functional-based tight-binding method and kinetic dislocation theory to investigate the subsequent plastic deformation mechanism in these pre-existing phase-transformation diamond twins.Our results suggest that pressure-dependent conversion of the plastic deformation mechanism occurs at a critical synthetic pressure for nt-diamond,which explains the existence of the minimum twin thickness.Our findings provide guidance on optimizing the synthetic conditions for fabricating nt-diamond with higher hardness and stability.展开更多
Inspired by the controversy over tensile deformation modes of single-crystalline 〈110〉/{111} Au nanowires, we investigated the dependency of the deformation mode on diameters of nanowires using the molecular dynamic...Inspired by the controversy over tensile deformation modes of single-crystalline 〈110〉/{111} Au nanowires, we investigated the dependency of the deformation mode on diameters of nanowires using the molecular dynamics technique. A new criterion for assessing the preferred deformation mode-slip or twin propagation--of nanowires as a function of nanowire diameter is presented. The results demonstrate the size-dependent transition, from superplastic deformation mediated by twin propagation to the rupture by localized slips in deformed region as the nanowire diameter decreases. Moreover, the criterion was successfully applied to explain the superplastic deformation of Cu nanowires.展开更多
文摘Microstructure refinement of a dual phase titanium alloy, Ti-3AI-4.5V-5Mo, by severe room temperature compression was investigated. Nanocrystalline grains were observed in the sample with 75% reduction, in which the grain sizes of a phase and β phase were approximately 50 and 100 nm. Conversely, the average thicknesses of a phase and β phase in as-received microstructure were measured to be 0.7 and 0.5 μm, respectively. TEM and XRD methods were used to analyze the microstructure and texture changes after severe deformation. Microstructure refinement was deduced to the complex interaction among slip dislocations in the a phase, the complex interaction among slip dislocations and martensites in the β phases. In addition, the interaction between the a phase and the β phase also contributed to the microstructure refinement.
基金This work was supported by the National Natural Science Foundation of China (No.61674078) and Dongrun- Yau Science Silver Award (Chemistry).
文摘Transparent, flexible electronic skin holds a wide range of applications in robotics, humanmachine interfaces, artificial intelligence, prosthetics, and health monitoring. Silver nanowire are mechanically flexible and robust, which exhibit great potential in transparent and electricconducting thin film. Herein, we report on a silver-nanowire spray-coating and electrodemicrostructure replicating strategy to construct a transparent, flexible, and sensitive electronic skin device. The electronic skin device shows highly sensitive piezo-capacitance response to pressure. It is found that micropatterning the surface of dielectric layer polyurethane elastomer by replicating from microstructures of natural-existing surfaces such as lotus leaf, silk, and frosted glass can greatly enhance the piezo-capacitance performance of the device. The microstructured pressure sensors based on silver nanowire exhibit good transparency, excellent flexibility, wide pressure detection range (0-150 kPa), and high sensitivity (1.28 kPa-1).
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No. 2002AA2Z404), and the Key Innovation Project (No. KZCX3-SW-446) from Chinese Academy of Sciences,China
文摘Freshwater shortage is the main problem in Heilonggang lower-lying plain, while a considerable amount of underground saline water is available. We wanted to find an effective way to use the brackish water in winter wheat production. Surface mulch has significant effect in reducing evaporation and decreasing soil salinity level. This research was aimed at comparing the effect of different mulch materials on winter wheat production. The experiment was conducted during 2002-2003 and 2003-2004. Four treatments were setup: (1) no mulch, (2) mulch with plastic film, (3) mulch with corn straw, (4) mulch with concrete slab between the rows. The result indicated that concrete mulch and straw mulch was effective in conserving soil water compared to plastic film mulch which increased soil temperature. Concrete mulch decreases surface soil salinity better in comparison to other mulches used. Straw mulch conserved more soil water but decreased wheat grain yield probably due to low temperature. Concrete mulch had similar effect with plastic film mulch on promoting winter wheat development and growth.
基金supported by the Opening Foundation of Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria(2019-04)the Science and Technology Innovation Project for Youth of Tianjin Agricultural Development Service Center(19KY11).
文摘The extensive existence of microplastics in the marine environment and the various definite and indefinite harm to the living creatures have been paid much attention.In this paper,the definition,source and pollution of micro(Nano)plastics in marine environment are reviewed.The related literatures are retrieved by using big data platform,the distribution characteristics of micro(Nano)plastics in the marine environment,control measures and so on,and the characteristics of key words making,resource distribution and contribution rate of research institutions are comprehensively analyzed.It provides the technical support for the scientific management of micro(Nano)plastics in the future.
基金This work was supported by the Fundamental Research Funds for the Central Universities (No.2017JBM003), the National Natural Science Foundation of China (No.61575053, No.61504008), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20130009120042).
文摘Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electrochemical energy storage system. A novel failure prediction modeling method of lithium ion battery based on distributed parameter estimation and single particle model is proposed in this work. Lithium ion concentration in the anode of lithium ion battery is an unmeasurable distributed variable. Failure prediction system can estimate lithium ion concentration online, track the failure residual which is the difference between the estimated value and the ideal value. The precaution signal will be triggered when the failure residual is beyond the predefined failure precaution threshold, and the failure countdown prediction module will be activated. The remaining time of the severe failure threshold can be estimated by the failure countdown prediction module according to the changing rate of the failure residual. A simulation example verifies that lithium ion concentration in the anode of lithium ion battery can be estimated exactly and effectively by the failure prediction model. The precaution signal can be triggered reliably, and the remaining time of the severe failure can be forecasted accurately by the failure countdown prediction module.
基金the National Natural Science Foundation of China(No.51871070).
文摘Based on molecular dynamics(MD)simulation,the mechanisms of plastic anisotropy in nanotwinned polycrystalline copper with{111}texture during tensile deformation were systematically studied from the aspects of Schmid factor of the dominant slip system and the dislocation mechanism.The results show that the Schmid factor of dominated slip system is altered by changing the inclining angle of the twin boundaries(TBs),while the yield stress or flow stress does not strictly follow the Schmid law.There exist hard and soft orientations involving different dislocation mechanisms during the tensile deformation.The strengthening mechanism of hard orientation lies in the fact that there exist interactions between the dislocations and the TBs during plastic deformation,which leads to the dislocation blocking and reactions.The softening mechanism of soft orientation lies in the fact that there is no interaction between the dislocations and the TBs because only the slip systems parallel to the TBs are activated and the dislocations slip on the planes parallel to the TBs.It is concluded that the plastic anisotropy in the nanotwinned polycrystalline copper with{111}texture is aroused by the combination effect of the Schmid factor of dominated slip system and the dislocation mechanism.
文摘The effects of plastic inulching on soil aeralion at the soil dcpth uf 0-100 cm were studied in a corn tield.The resnlts indicated that the CO_2 concentration of unmulched soil in the 0-100 cm layer layer ranged from 0.00 1to 0.016 m ̄3/m ̄3, and that of mulched soil 0.002 to 0.018m ̄3/m ̄3, about 32.39% higher than the forrner on theaverage. Such a CO_2 concentration in the soil air is still suitable for crop growth. The O_2 concentration wasinversely correlated with CO_2 concentrat ion in the soil air ( unmulching r=-0.92 ̄(**), mulching r=-0. 79 ̄*). O_2concentration ranged from 0. 1 1 to 0. 17 m ̄3/m ̄3 in the mulched soil and 0. 1 3 to 0. 18 m ̄3 /m ̄3 in the unmulchedsoil. By contrast, N_2 concentration in soil air remained relatively steady, with no difference between the twotreatments. The relationship between the soil respiratory intensity and the depth of a soil layer appeared tobe a power function. At the layer of 0-20 cm, the soil respiration intensity in the mulched soil was obviouslyhigher than that in the unmulched. Plastic mulching could also affect soil structure. In comparison withthe unmulched soil, the content of >0.25 mm aggregate and 0.05-0.001 mm microaggregate in the mulched soil was reduced by 82.1% and 35.8%, respectively; the soil total porosity, gaseous phase rate and aerationporosity in the depth of 10-20 cm were reduced by 2.85%, 19.89% and 26.54% respectively, but contrary at the depth of 0-10 cm.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0074936)
文摘Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.
文摘The plastic deformation and the ultrahigh strength of metals at the nanoscale have been predicted to be controlled by surface dislocation nucleation. In situ quantitative tensile tests on individual 〈111〉 single crystalline ultrathin gold nanowires have been performed and significant load drops observed in stress-strain curves suggest the occurrence of such dislocation nucleation. High-resolution transmission electron microscopy (HRTEM) imaging and molecular dynamics simulations demonstrated that plastic deformation was indeed initiated and dominated by surface dislocation nucleation, mediating ultrahigh yield and fracture strength in sub-lO-nm gold nanowires.
基金supported by the National Natural Science Foundation of China(51421091,51332005,51572225,51272227, 51172197,51525205 and 51672239)the US National Science Foundation(EAR-1361276)
文摘Nanotwinned diamond(nt-diamond),which demonstrates unprecedented hardness and stability,is synthesized through the martensitic transformation of onion carbons at high pressure and high temperature(HPHT).Its hardness and stability increase with decreasing twin thickness at the nanoscale.However,the formation mechanism of nanotwinning substructures within diamond nanograins is not well established.Here,we characterize the nanotwins in nt-diamonds synthesized under different HPHT conditions.Our observation shows that the nanotwin thickness reaches a minimum at ~20 GPa,below which phase-transformation twins and deformation twins coexist.Then,we use the density-functional-based tight-binding method and kinetic dislocation theory to investigate the subsequent plastic deformation mechanism in these pre-existing phase-transformation diamond twins.Our results suggest that pressure-dependent conversion of the plastic deformation mechanism occurs at a critical synthetic pressure for nt-diamond,which explains the existence of the minimum twin thickness.Our findings provide guidance on optimizing the synthetic conditions for fabricating nt-diamond with higher hardness and stability.
文摘Inspired by the controversy over tensile deformation modes of single-crystalline 〈110〉/{111} Au nanowires, we investigated the dependency of the deformation mode on diameters of nanowires using the molecular dynamics technique. A new criterion for assessing the preferred deformation mode-slip or twin propagation--of nanowires as a function of nanowire diameter is presented. The results demonstrate the size-dependent transition, from superplastic deformation mediated by twin propagation to the rupture by localized slips in deformed region as the nanowire diameter decreases. Moreover, the criterion was successfully applied to explain the superplastic deformation of Cu nanowires.