Underground storage systems are currently being used worldwide for the geological storage of natural gas (CH4), the geological disposal of CO2, in geothermal energy, or radioactive waste disposal. We introduce a com...Underground storage systems are currently being used worldwide for the geological storage of natural gas (CH4), the geological disposal of CO2, in geothermal energy, or radioactive waste disposal. We introduce a complex approach to the risks posed by induced bedrock instabilities in deep geological underground storage sites. Bedrock instability owing to underground openings has been studied and discussed for many years. The Bohemian Massif in the Czech Republic (Central Europe) is geologically and tectonically complex. However, this setting is ideal for leaming about the instability state of rock masses. Longterm geological and mining studies, natural and induced seismicity, radon emanations, and granite properties as potential storage sites for disposal of radioactive waste in the Czech Republic have provided useful information. In addition, the Czech Republic, with an average concentration radon of 140 Bq m-3, has the highest average radon concentrations in the world. Bedrock instabilities might emerge from microscale features, such as grain size and mineral orientation, and microfracturing. Any underground storage facility construction has to consider the stored substance and the geological settings. In the Czech Republic, granites and granitoids are the best underground storage sites. Microcrack networks and migration properties are rock specific and vary considerably. Moreover, the matrix porosity also affects the mechanical properties of the rocks. Any underground storage site has to be selected carefully. The authors suggest to study the complex set of parameters from micro to macroscale for a particular place and type of rock to ensure that the storage remains safe and stable during construction, operation, and after closure.展开更多
This study emphasizes the advantage of tectonic phase separation in determination of a tectonic evolution of complicated fault zones. The research focused on the Sudetic Marginal Fault Zone(SMFZ) –a 250 km long activ...This study emphasizes the advantage of tectonic phase separation in determination of a tectonic evolution of complicated fault zones. The research focused on the Sudetic Marginal Fault Zone(SMFZ) –a 250 km long active fault zone with documented intraplate seismicity situated on the NE margin of the Bohemian Massif(the Czech Republic). The tectonic history of the SMFZ as well as its kinematic development has been rather complicated and not quite understood. A field structural investigation was carried out in extensive surroundings of the fault zone. The fault-slip data were collected in a number of natural outcrops and quarries with the aim at establishing a robust and field-constrained model for local brittle structural evolution of the studied area. A paleostress analysis was calculated using the collected fault-slip data inversion. The T-Tecto software was utilized for semiautomatic separation of the paleostress phases. Simultaneously three methods of data separation were employed:(1) the Gauss inverse method,(2) the Visualization of Gauss object Function, and(3) the frequency analysis. Within the fault zone multiphase movements were observed on various types of faults as well as wide range of the kinematic indicators orientations. The frequency analysis confirmed the multiphase history of the SMFZ. The calculated tectonic phases were divided according to their relative age as constrained by cross cutting relationships and, where observed, multiple striations on a single fault plane and classified from the oldest to the younger. Data separation and inversion usingT-Tecto software with the Gauss inverse method revealed four different stress phases which are 3 strike-slip stress regimes and one compressional regime. The strike-slip regimes are characterized by σ1 trending NW-SE(43), NNE-SSW(18), ENE-WSW(76) and the compressional one by σ1 trending W-E(26). First, compression occurred parallel to the SMFZ supposedly during the Variscan period. Second, compression at an angle of 60° to general direction of the SMFZ yielded right-lateral movement along the fault zone. This is considered to have occurred during the late-Variscan and post-Variscan period. Third, compression in the W-E direction with almost vertical extension led to reverse movement along the fault zone. This is considered to have occurred during Cenozoic. Fourth, compression almost perpendicular to the SMFZ led to left-lateral transpression along the SMFZ. This is considered to have occurred during Quaternary.展开更多
The seismic hazard value is a fundamental quantity for the seismic risk assessment and for the determination of terms of references of seismic design of important facilities as dams, chemical plants, nuclear power pla...The seismic hazard value is a fundamental quantity for the seismic risk assessment and for the determination of terms of references of seismic design of important facilities as dams, chemical plants, nuclear power plants, etc.. In real sites, the seismic hazard value is influenced by both, the earthquake sizes, the impacts of which in a given site may be expected, and the properties of geological structure through which seismic waves spread from earthquake loci to a given site. The seismic risk is predetermined by hazard value, distribution of assets in the given site and asset numbers and vulnerabilities. The paper describes the used procedure of hazard assessment of important sites. The attention is especially paid to the basic steps as the data collection (homogeneity level, uncertainty and vagueness), the focal region boundaries (their uncertainties and vagueness), and the maximum expected earthquake size in each focal region that must be taken into account (its uncertainty and vagueness), because they substantially influence the hazard value. Discussion is also concentrated to the attenuation that Central Europe substantially depends on the azimuth between earthquake focus and the given site. The attenuation differences are shown in seismic scenarios for individual focal regions. They are caused by focal mechanisms in near focal zone and differences in structure properties in distant zone; the boundary between near and distant zone in Central Europe is ca 2.5 h, where h is the focal depth in km. The real results are given for a real locality in Central Europe. It is shown than that great influence on hazard value is caused by great differences in azimuth attenuation curves. It is the reality that the Bohemian Massif is characterised with very low seismic attenuation in comparison with its vicinity. The following real results are presented: geological structure of near site vicinity, earthquake catalogue for Central Europe, focal regions in Central Europe, attenuation curves in Central Europe, typical earthquake isoseismals for individual focal regions, frequency graph, recurrence probability curve, etc.. The approaches used for nuclear facilities were recommended by the IAEA (International Atomic Energy Agency).展开更多
基金supported by the long-term conceptual development research organization RVO grant 67985891the Ministry of Industry and Trade of the Czech Republic (FR-TI1/367)
文摘Underground storage systems are currently being used worldwide for the geological storage of natural gas (CH4), the geological disposal of CO2, in geothermal energy, or radioactive waste disposal. We introduce a complex approach to the risks posed by induced bedrock instabilities in deep geological underground storage sites. Bedrock instability owing to underground openings has been studied and discussed for many years. The Bohemian Massif in the Czech Republic (Central Europe) is geologically and tectonically complex. However, this setting is ideal for leaming about the instability state of rock masses. Longterm geological and mining studies, natural and induced seismicity, radon emanations, and granite properties as potential storage sites for disposal of radioactive waste in the Czech Republic have provided useful information. In addition, the Czech Republic, with an average concentration radon of 140 Bq m-3, has the highest average radon concentrations in the world. Bedrock instabilities might emerge from microscale features, such as grain size and mineral orientation, and microfracturing. Any underground storage facility construction has to consider the stored substance and the geological settings. In the Czech Republic, granites and granitoids are the best underground storage sites. Microcrack networks and migration properties are rock specific and vary considerably. Moreover, the matrix porosity also affects the mechanical properties of the rocks. Any underground storage site has to be selected carefully. The authors suggest to study the complex set of parameters from micro to macroscale for a particular place and type of rock to ensure that the storage remains safe and stable during construction, operation, and after closure.
基金supported by the Grant Agency of Charles University (43-258020)the Czech Science Foundation (250/09/1244)the Institute of Rock Structure and Mechanics AS CR, v.v.i. (A VOZ30460519)
文摘This study emphasizes the advantage of tectonic phase separation in determination of a tectonic evolution of complicated fault zones. The research focused on the Sudetic Marginal Fault Zone(SMFZ) –a 250 km long active fault zone with documented intraplate seismicity situated on the NE margin of the Bohemian Massif(the Czech Republic). The tectonic history of the SMFZ as well as its kinematic development has been rather complicated and not quite understood. A field structural investigation was carried out in extensive surroundings of the fault zone. The fault-slip data were collected in a number of natural outcrops and quarries with the aim at establishing a robust and field-constrained model for local brittle structural evolution of the studied area. A paleostress analysis was calculated using the collected fault-slip data inversion. The T-Tecto software was utilized for semiautomatic separation of the paleostress phases. Simultaneously three methods of data separation were employed:(1) the Gauss inverse method,(2) the Visualization of Gauss object Function, and(3) the frequency analysis. Within the fault zone multiphase movements were observed on various types of faults as well as wide range of the kinematic indicators orientations. The frequency analysis confirmed the multiphase history of the SMFZ. The calculated tectonic phases were divided according to their relative age as constrained by cross cutting relationships and, where observed, multiple striations on a single fault plane and classified from the oldest to the younger. Data separation and inversion usingT-Tecto software with the Gauss inverse method revealed four different stress phases which are 3 strike-slip stress regimes and one compressional regime. The strike-slip regimes are characterized by σ1 trending NW-SE(43), NNE-SSW(18), ENE-WSW(76) and the compressional one by σ1 trending W-E(26). First, compression occurred parallel to the SMFZ supposedly during the Variscan period. Second, compression at an angle of 60° to general direction of the SMFZ yielded right-lateral movement along the fault zone. This is considered to have occurred during the late-Variscan and post-Variscan period. Third, compression in the W-E direction with almost vertical extension led to reverse movement along the fault zone. This is considered to have occurred during Cenozoic. Fourth, compression almost perpendicular to the SMFZ led to left-lateral transpression along the SMFZ. This is considered to have occurred during Quaternary.
文摘The seismic hazard value is a fundamental quantity for the seismic risk assessment and for the determination of terms of references of seismic design of important facilities as dams, chemical plants, nuclear power plants, etc.. In real sites, the seismic hazard value is influenced by both, the earthquake sizes, the impacts of which in a given site may be expected, and the properties of geological structure through which seismic waves spread from earthquake loci to a given site. The seismic risk is predetermined by hazard value, distribution of assets in the given site and asset numbers and vulnerabilities. The paper describes the used procedure of hazard assessment of important sites. The attention is especially paid to the basic steps as the data collection (homogeneity level, uncertainty and vagueness), the focal region boundaries (their uncertainties and vagueness), and the maximum expected earthquake size in each focal region that must be taken into account (its uncertainty and vagueness), because they substantially influence the hazard value. Discussion is also concentrated to the attenuation that Central Europe substantially depends on the azimuth between earthquake focus and the given site. The attenuation differences are shown in seismic scenarios for individual focal regions. They are caused by focal mechanisms in near focal zone and differences in structure properties in distant zone; the boundary between near and distant zone in Central Europe is ca 2.5 h, where h is the focal depth in km. The real results are given for a real locality in Central Europe. It is shown than that great influence on hazard value is caused by great differences in azimuth attenuation curves. It is the reality that the Bohemian Massif is characterised with very low seismic attenuation in comparison with its vicinity. The following real results are presented: geological structure of near site vicinity, earthquake catalogue for Central Europe, focal regions in Central Europe, attenuation curves in Central Europe, typical earthquake isoseismals for individual focal regions, frequency graph, recurrence probability curve, etc.. The approaches used for nuclear facilities were recommended by the IAEA (International Atomic Energy Agency).