A facile, economical and green strategy to prepare green-fluorescent nitrogen-doped carbon nanodots (N- CDs) with a quantum yield (QY) of approximately 31.91% has been built up, while aspartame was employed as the...A facile, economical and green strategy to prepare green-fluorescent nitrogen-doped carbon nanodots (N- CDs) with a quantum yield (QY) of approximately 31.91% has been built up, while aspartame was employed as the carbon-nitrogen source for the first time. The prepared N-CDs exhibited ultrahigh brightness, favorable strong photostability and negligible cytotoxicity. The outstanding optical properties are mainly derived from the their robost composition and steric distribution of the doped nitrogen atoms, which have been characterized detailedly. The obtained N-CDs showed highly selective and sensitive response toward ferric ions (Fe3+) through a fluorescence static quenching process in a wide linear range of 0.005-60 μmol/L. The detection limit was as low as 1.43 nmol/L, allowing the analysis of Fe3+ in a very simple method. The excitation-dependent luminescent behavior of the obtained N-CDs guaranteed the multicolor emissive property when they were used in cell imaging. And the application for intracellular Fe3+ sensing further verified this novel N-CDs may open more opportunities in biosensor, bioimaging and biological assay.展开更多
基金supported by the National Natural Science Foundation of China (21575022, 21535003) the National High Technology Research and Development Program of China (2015AA020502)+1 种基金 the Fundamental Research Funds for the Central Universities (2242016K41055)Qing Lan Project and the Priority Academic Program Development of Jiangsu Higher Education Institutions (1107047002)
文摘A facile, economical and green strategy to prepare green-fluorescent nitrogen-doped carbon nanodots (N- CDs) with a quantum yield (QY) of approximately 31.91% has been built up, while aspartame was employed as the carbon-nitrogen source for the first time. The prepared N-CDs exhibited ultrahigh brightness, favorable strong photostability and negligible cytotoxicity. The outstanding optical properties are mainly derived from the their robost composition and steric distribution of the doped nitrogen atoms, which have been characterized detailedly. The obtained N-CDs showed highly selective and sensitive response toward ferric ions (Fe3+) through a fluorescence static quenching process in a wide linear range of 0.005-60 μmol/L. The detection limit was as low as 1.43 nmol/L, allowing the analysis of Fe3+ in a very simple method. The excitation-dependent luminescent behavior of the obtained N-CDs guaranteed the multicolor emissive property when they were used in cell imaging. And the application for intracellular Fe3+ sensing further verified this novel N-CDs may open more opportunities in biosensor, bioimaging and biological assay.