In the present study, galactosylated chitosan(Gal-CS) was conjugated with methoxy poly(ethylene glycol)(m PEG) as a hydrophilic group. The structure of Gal-CS-m PEG polymer was characterized and the nanoparticles(NPs)...In the present study, galactosylated chitosan(Gal-CS) was conjugated with methoxy poly(ethylene glycol)(m PEG) as a hydrophilic group. The structure of Gal-CS-m PEG polymer was characterized and the nanoparticles(NPs) were prepared using ironic gelation method. The study was designed to investigate the characteristics and functions of Gal-CS-m PEG NPs. The morphology of Gal-CS-m PEG NPs was observed by SEM and it was a compact and spherical shape. The size of the NPs was approximately 200 nm in diameter under the ideal process parameters. The interaction between Gal-CS-m PEG NPs and p DNA, and the protection of p DNA against DNase I and serum degradation by Gal-CS-m PEG NPs were evaluated. Agarose gel electrophoresis results showed that Gal-CS-m PEG NPs had strong interaction with p DNA at the weight ratio of 12:1, 4:1 and 2:1 and could protect p DNA from DNase I and serum degradation. Gal-CS-m PEG NPs exhibited high loading efficiency and sustainable in vitro release. The blood compatibility studies demonstrated that Gal-CS-m PEG NPs had superior compatibility with erythrocytes in terms of aggregation degree and hemolysis level. Gal-CS-m PEG NPs showed no cytotoxicity on L929 cells, which is a normal mouse connective tissue fibroblast, but showed inhibitory effects on the proliferation of Bel-7402 cells, which is a liver cancer cell line. In conclusion, Gal-CS-m PEG NP is a bio-safe and efficient gene carrier with potential application in gene delivery.展开更多
The separations of single-wall carbon nanotubes on length by sepharose gel were investigated in this work. The solutions of sodium dodecyl sulfate and sodium deoxycholate were applied as the eluent in sequence. SEM an...The separations of single-wall carbon nanotubes on length by sepharose gel were investigated in this work. The solutions of sodium dodecyl sulfate and sodium deoxycholate were applied as the eluent in sequence. SEM and Raman were used to characterize the length of nanotube bundles. The results show that the longer nanotubes were eluted out first, and then the shorter tubes were followed by the sodium dodecyl sulfate. However, the separated order was totally reversed by the sodium deoxycholate. By this method, the process generated nanotube fractions not only were narrower in length distributions, but also could control the separation orders by changing the eluents. Moreover, the separation principle was also discussed.展开更多
Composite materials were synthesized by encapsulating Au and Ag nanoparticles in an agar gel matrix. These metallic nano-particles were found to be separately stored, so their optical, catalytic, and antibacterial pro...Composite materials were synthesized by encapsulating Au and Ag nanoparticles in an agar gel matrix. These metallic nano-particles were found to be separately stored, so their optical, catalytic, and antibacterial properties were retained both in the composite gel and a composite membrane. The composite gels were stable under hard external conditions. Based on this, a sensor for the detection of Hg2+ was developed using the Au nanoparticle/agar composite gel. Antibacterial materials were achieved using the Ag nanoparticle/agar composite gel and composite membrane. These two Ag nanoparticle-based materials showed good antibacterial activity against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus.展开更多
基金the National ‘12th Five-year’ High technology Research and Development Program of China (No. 2014AA093605)the Zhejiang Science and Technology Project (No. 2013C 33192)
文摘In the present study, galactosylated chitosan(Gal-CS) was conjugated with methoxy poly(ethylene glycol)(m PEG) as a hydrophilic group. The structure of Gal-CS-m PEG polymer was characterized and the nanoparticles(NPs) were prepared using ironic gelation method. The study was designed to investigate the characteristics and functions of Gal-CS-m PEG NPs. The morphology of Gal-CS-m PEG NPs was observed by SEM and it was a compact and spherical shape. The size of the NPs was approximately 200 nm in diameter under the ideal process parameters. The interaction between Gal-CS-m PEG NPs and p DNA, and the protection of p DNA against DNase I and serum degradation by Gal-CS-m PEG NPs were evaluated. Agarose gel electrophoresis results showed that Gal-CS-m PEG NPs had strong interaction with p DNA at the weight ratio of 12:1, 4:1 and 2:1 and could protect p DNA from DNase I and serum degradation. Gal-CS-m PEG NPs exhibited high loading efficiency and sustainable in vitro release. The blood compatibility studies demonstrated that Gal-CS-m PEG NPs had superior compatibility with erythrocytes in terms of aggregation degree and hemolysis level. Gal-CS-m PEG NPs showed no cytotoxicity on L929 cells, which is a normal mouse connective tissue fibroblast, but showed inhibitory effects on the proliferation of Bel-7402 cells, which is a liver cancer cell line. In conclusion, Gal-CS-m PEG NP is a bio-safe and efficient gene carrier with potential application in gene delivery.
基金supported by the National Science & Technology Pillar Program of MOST (Grant No. 2011BAK15B04)
文摘The separations of single-wall carbon nanotubes on length by sepharose gel were investigated in this work. The solutions of sodium dodecyl sulfate and sodium deoxycholate were applied as the eluent in sequence. SEM and Raman were used to characterize the length of nanotube bundles. The results show that the longer nanotubes were eluted out first, and then the shorter tubes were followed by the sodium dodecyl sulfate. However, the separated order was totally reversed by the sodium deoxycholate. By this method, the process generated nanotube fractions not only were narrower in length distributions, but also could control the separation orders by changing the eluents. Moreover, the separation principle was also discussed.
基金financially supported by the National Natural Science Foundation of China(21035005)the Fundamental Research Funds for the Central Universities(XDJK2012C048)the Research Fund for the Doctoral Program of Southwest University(swu112071)
文摘Composite materials were synthesized by encapsulating Au and Ag nanoparticles in an agar gel matrix. These metallic nano-particles were found to be separately stored, so their optical, catalytic, and antibacterial properties were retained both in the composite gel and a composite membrane. The composite gels were stable under hard external conditions. Based on this, a sensor for the detection of Hg2+ was developed using the Au nanoparticle/agar composite gel. Antibacterial materials were achieved using the Ag nanoparticle/agar composite gel and composite membrane. These two Ag nanoparticle-based materials showed good antibacterial activity against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus.