Africa is the most affected continent with energy poverty. Wood fuel is the main source of energy for remote and rural populations. At the same time, most parts of Africa are endowed with abundant solar energy. Togeth...Africa is the most affected continent with energy poverty. Wood fuel is the main source of energy for remote and rural populations. At the same time, most parts of Africa are endowed with abundant solar energy. Together with a highly developed global solar industry and ever declining cost of solar systems, solar has unprecedented potential to combat energy poverty in Africa. However, dissemination of solar systems is faced with a number of barriers and challenges amongst where sustainable financing and lack of technological support for installation, maintenance and repair of systems are the most significant. This paper discusses the cases of Botswana and Namibia where financing schemes based on different partnership models have been successfully implemented. These schemes have the potential for success and adaptation by countries with similar socio-economic conditions. We conclude with recommendations on training programs for different levels of intervention to overcome the lack of technological support.展开更多
This paper proposes an additive nanomanufacturing approach to fabricate a personalized lab-on-a-chip fluorescent peptide nanoparticles (f-PNPs) array for simultaneous multi-biomarker detection that can be used in Al...This paper proposes an additive nanomanufacturing approach to fabricate a personalized lab-on-a-chip fluorescent peptide nanoparticles (f-PNPs) array for simultaneous multi-biomarker detection that can be used in Alzheimer's disease (AD) diagnosis. We will discuss optimization techniques for the additive nanomanufacturing process in terms of reliability, yield and manufacturing efficiency. One contribution of this paper lies in utilization of additive nanomanufacturing techniques to fabricate a patient-specific customize-designed lab-on-a-chip device for personalized AD diagnosis, which remains a major challenge for biomedical engineering. Through the integrated bio-design and bio-manufacturing process, doctor's check- up and computer-aided customized design are integrated into the lab-on-a-chip array for patient-specific AD diagnosis. In addition, f-PNPs with targeting moieties for personalized AD biomarkers will be self-assembled onto the customized lab-on-a- chip through the additive nanomanufacturing process, which has not been done before. Another contribution of this research is the personalized lab-on-a-chip f-PNPs array for AD diagnosis utilizing limited human blood. Blood-based AD assessment has been described as "the holy grail" of early AD detection. This research created the computer-aided design, fabrication through additive nanomanufacturing, and validation of the f-PNPs array for AD diagnosis. This is a highly interdisciplinary research contributing to nanotechnology, biomaterials, and biomedical engineering for neurodegenerative disease. The conceptual work is preliminary with intent to introduce novel techniques to the application. Large-scale manufacturing based on the proposed framework requires extensive validation and optimization.展开更多
Polymerization of amyloid-β peptide (Aβ) into amyloid fibrils is a critical step in the pathogenesis of Alzheimer's disease (AD). Inhibition of Aβ aggregation and destabilization of preformed Aβ fibrils have ...Polymerization of amyloid-β peptide (Aβ) into amyloid fibrils is a critical step in the pathogenesis of Alzheimer's disease (AD). Inhibition of Aβ aggregation and destabilization of preformed Aβ fibrils have promising effects against AD and have been used in clinic trials. Herein, we demonstrate, for the first time, the application of WS2 nanosheets, to not only effectively inhibit Aβ aggregation, but also dissociate preformed Aβ aggregates upon near infrared (NIR) irradiation. Additionally, the biocompatible WS2 nanosheets possess the ability to cross the blood-brain barrier (BBB) to overcome the limitations of most previously reported Aβ inhibitors. Through van der Waals and electrostatic interactions between Aβ40 and WS2, Aβ40 monomers can be selectively adsorbed on the surface of the nanosheet to inhibit the Aβ40 aggregation process. Intriguingly, the unique high NIR absorption property of WS2 enables amyloid aggregates to be dissolved upon NIR irradiation. These results will promote biological applications of WS2 and provide new insight into the design of multifunctional nanomaterials for AD treatment.展开更多
Human apolipoprotein E4(APOE4)is an important risk factor for late-onset Alzheimer’s disease(AD).However,little progress has been made for the detection of APOE4,and most of existing detection methods suffer from tim...Human apolipoprotein E4(APOE4)is an important risk factor for late-onset Alzheimer’s disease(AD).However,little progress has been made for the detection of APOE4,and most of existing detection methods suffer from time-consuming process and expensive instruments.This study firstly proposed a simple and sensitive electrochemical method for detection of APOE4 based on carboxyl-rich CeZnO nanoparticles.Under the optimal conditions,the fabricated immunosensor exhibited a good linear relationship ranging from 10 to 100 ng/mL with the detection limit of 1.8 ng/mL(S/N=3).The proposed electrochemical immunosensor had excellent selectivity,reproducibility and stability.Good performance was observed for sensitive determination of APOE4 in human serum sample,which provided a strong support for the detection of APOE4 and early clinical prevention of AD.展开更多
文摘Africa is the most affected continent with energy poverty. Wood fuel is the main source of energy for remote and rural populations. At the same time, most parts of Africa are endowed with abundant solar energy. Together with a highly developed global solar industry and ever declining cost of solar systems, solar has unprecedented potential to combat energy poverty in Africa. However, dissemination of solar systems is faced with a number of barriers and challenges amongst where sustainable financing and lack of technological support for installation, maintenance and repair of systems are the most significant. This paper discusses the cases of Botswana and Namibia where financing schemes based on different partnership models have been successfully implemented. These schemes have the potential for success and adaptation by countries with similar socio-economic conditions. We conclude with recommendations on training programs for different levels of intervention to overcome the lack of technological support.
文摘This paper proposes an additive nanomanufacturing approach to fabricate a personalized lab-on-a-chip fluorescent peptide nanoparticles (f-PNPs) array for simultaneous multi-biomarker detection that can be used in Alzheimer's disease (AD) diagnosis. We will discuss optimization techniques for the additive nanomanufacturing process in terms of reliability, yield and manufacturing efficiency. One contribution of this paper lies in utilization of additive nanomanufacturing techniques to fabricate a patient-specific customize-designed lab-on-a-chip device for personalized AD diagnosis, which remains a major challenge for biomedical engineering. Through the integrated bio-design and bio-manufacturing process, doctor's check- up and computer-aided customized design are integrated into the lab-on-a-chip array for patient-specific AD diagnosis. In addition, f-PNPs with targeting moieties for personalized AD biomarkers will be self-assembled onto the customized lab-on-a- chip through the additive nanomanufacturing process, which has not been done before. Another contribution of this research is the personalized lab-on-a-chip f-PNPs array for AD diagnosis utilizing limited human blood. Blood-based AD assessment has been described as "the holy grail" of early AD detection. This research created the computer-aided design, fabrication through additive nanomanufacturing, and validation of the f-PNPs array for AD diagnosis. This is a highly interdisciplinary research contributing to nanotechnology, biomaterials, and biomedical engineering for neurodegenerative disease. The conceptual work is preliminary with intent to introduce novel techniques to the application. Large-scale manufacturing based on the proposed framework requires extensive validation and optimization.
基金This work was supported by the National Basic Research Program of China (Nos. 2011CB936004 and 2012CB720602), and the National Natural Science Foundation of China (Nos. 21210002, 91213302, 21431007, and 91413111).
文摘Polymerization of amyloid-β peptide (Aβ) into amyloid fibrils is a critical step in the pathogenesis of Alzheimer's disease (AD). Inhibition of Aβ aggregation and destabilization of preformed Aβ fibrils have promising effects against AD and have been used in clinic trials. Herein, we demonstrate, for the first time, the application of WS2 nanosheets, to not only effectively inhibit Aβ aggregation, but also dissociate preformed Aβ aggregates upon near infrared (NIR) irradiation. Additionally, the biocompatible WS2 nanosheets possess the ability to cross the blood-brain barrier (BBB) to overcome the limitations of most previously reported Aβ inhibitors. Through van der Waals and electrostatic interactions between Aβ40 and WS2, Aβ40 monomers can be selectively adsorbed on the surface of the nanosheet to inhibit the Aβ40 aggregation process. Intriguingly, the unique high NIR absorption property of WS2 enables amyloid aggregates to be dissolved upon NIR irradiation. These results will promote biological applications of WS2 and provide new insight into the design of multifunctional nanomaterials for AD treatment.
基金The National Youth Foundation of China(Grant No.81803487)National Natural Science Foundation(Grant No.81673392)China Postdoctoral Science Foundation(Grant No.2018M631285).
文摘Human apolipoprotein E4(APOE4)is an important risk factor for late-onset Alzheimer’s disease(AD).However,little progress has been made for the detection of APOE4,and most of existing detection methods suffer from time-consuming process and expensive instruments.This study firstly proposed a simple and sensitive electrochemical method for detection of APOE4 based on carboxyl-rich CeZnO nanoparticles.Under the optimal conditions,the fabricated immunosensor exhibited a good linear relationship ranging from 10 to 100 ng/mL with the detection limit of 1.8 ng/mL(S/N=3).The proposed electrochemical immunosensor had excellent selectivity,reproducibility and stability.Good performance was observed for sensitive determination of APOE4 in human serum sample,which provided a strong support for the detection of APOE4 and early clinical prevention of AD.