The effects of different maize sowing dates and densities on stem and leaf morphological characters and yield of soybean in wheat/maize/soybean relaycropping system were studied. The results showed that with early sow...The effects of different maize sowing dates and densities on stem and leaf morphological characters and yield of soybean in wheat/maize/soybean relaycropping system were studied. The results showed that with early sowing of maize, the maize yield was promoted, and maize was harvested in advance, which reduced the intergrowth period with soybean and guaranteed soybean's proper plant height, larger stem diameter and optimal values of LAI and SLW, so that soybean yield was also increased. The effects of different maize densities on the stem and leaf of soybean mainly were significant before the maize harvest, but soybean yield under high maize density was significantly lower than that under middle and low maize density, and the highest maize yield was under middle density. Based on soybean and maize comprehensive values, the optimum combination of this experiment was sowed on March 21 and planting density was 5.25×10^4 plant/hm^2.展开更多
The research mainly analyzed effects of waxy corn/soybean intercropping on yields of the two crops, as well as agronomic characters, and the economic benefits of the mode. The results showed that although yields of wa...The research mainly analyzed effects of waxy corn/soybean intercropping on yields of the two crops, as well as agronomic characters, and the economic benefits of the mode. The results showed that although yields of waxy corn and soybean went down by 21.19% and 31.04% per unit area, land equivalent ratio(1.48) kept higher than 1, suggesting the intercropping improves land use rate. Besides, due to the practice of intercropping, many characters of waxy corn grew, but of soybean declined. The economic benefits from high to low were waxy corn/soybean intercropping, monoculture of waxy corn, and monoculture of soybean.展开更多
The high-efficiency planting mode for five crops a year of fresh edible "faba bean/spring maize+soybean-autumn maize/autumn soybean" was introduced, and its yield and economic benefits were compared with the planti...The high-efficiency planting mode for five crops a year of fresh edible "faba bean/spring maize+soybean-autumn maize/autumn soybean" was introduced, and its yield and economic benefits were compared with the planting mode of three crops a year of "faba bean-spring maize/red bean". The results showed that the planting method for fresh edible "faba bean/spring maize+soybean-autumn maize/autumn soybean" was much easier to operate with the input-output ratio of about185.6%, and its yield and economic benefits were 2.09 and 1.83 times of that of the planting mode for three crops a year, significantly improving the agricultural yield and income of farmers. In addition, the cropping index of the planting mode for fresh edible fresh edible "faba bean/spring maize +soybean-autumn maize/autumn soybean" reached up to 350%, and planting faba bean once a year and soybean twice a year could make the biological fixation amount of nitrogen increase 350-450kg/m^2, which equaled to up to 700 kg/m^2 of urea, showing significant ecological and social benefits. Based on the comparison results, the high-yield culture techniques of the planting mode of fresh edible "faba bean/spring maize+soybean-autumn maize/autumn soybean" were summarized.展开更多
[Objective] The aim was to discuss the group dry matter accumulation and economic benefits under the patterns of intercropping maize (Zea mays L.) with soy-bean [Glycine max (L.) Merril ]. [Methods] Zhengdan-958 a...[Objective] The aim was to discuss the group dry matter accumulation and economic benefits under the patterns of intercropping maize (Zea mays L.) with soy-bean [Glycine max (L.) Merril ]. [Methods] Zhengdan-958 and Luhuang-1 were used as the testing breeds to study the effects of intercropping patterns on dry matter accumulation and transportation of maize and soybean in Huang-huai-hai. [Results] For maize, the dry matter accumulation amounts per hectare of intercropping was significant higher than that of the monoculture patterns, especial y after silking, when it reached extremely level; while for soybean, the dry matter accumulation amounts before flowering and after flowering of monocropping were al significantly higher than that of the intercropping patterns. For both maize and soybean, the transfer amounts of monocropping were al significantly or extremely significantly higher than that of intercropping; and the transfer ratio of maize intercropping was 0.59% higher than that of maize monocropping, while for soybean, it was 4.74% higher. Fitted dry matter accumulation with Logistic equation, it showed that the difference in maximum dry matter accumulation rate between maize monocropping and intercropping reached significant level, while for soybean, the maximum dry matter accumulation rate and its appearance time as wel as duration time between intercropping and monocropping were al reached significant level. The total land equivalent ratio of intercropping was 1.30. From yield and output value, the total yield of intercropping were 10.97 t/hm2, 0.64% and 326.85% higher than monocropping of maize and soy-bean, respectively. The total output value of intercropping was 25 796.23 yuan/hm2, respectively 12.67% and 104.68% higher than of maize and soybean monocropping. [Conclusion] The study lays a basis for improving grain yield and economic benefits.展开更多
Application of phosphate-solubilizing microorganisms (PSMs) has been reported to increase P uptake and plant growth. However, no information is available regarding the ecological consequences of the inoculation with P...Application of phosphate-solubilizing microorganisms (PSMs) has been reported to increase P uptake and plant growth. However, no information is available regarding the ecological consequences of the inoculation with PSMs. The effect of inoculation with phosphate-solubilizing fungal (PSF) isolates Aspergillus niger P39 and Penicillium oxalicum P66 on the bacterial communities in the rhizospheres of maize (Zea mays L. 'Haiyu 6') and soybean (Glycine max Merr. 'Heinong 35') was examined using culture-dependent methods as well as a culture-independent method, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Compared with the control, the number of culturable microbes for soybean was significantly greater with P39, whereas for maize, the same was significantly greater with P66. In addition, a greater number of microbes were found in the rhizosphere of maize compared with soybean. The fingerprint of DGGE for 16S rDNA indicated that inoculation with PSF also increased bacterial communities, with the P66 treatment having higher numbers of DGGE bands and a higher Shannon-Weaver diversity index compared with P39; the composition of the microbial community was also more complex with the P66 treatment. Overall, complex interactions between plant species and exotic PSMs affected the structure of the bacterial community in the rhizosphere, but plant species were more important in determining the bacterial community structure than the introduction of exotic microorganisms.展开更多
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(nyhyzx07004-10)Major Science&Technology Program of Sichuan Province(01NG016-01)~~
文摘The effects of different maize sowing dates and densities on stem and leaf morphological characters and yield of soybean in wheat/maize/soybean relaycropping system were studied. The results showed that with early sowing of maize, the maize yield was promoted, and maize was harvested in advance, which reduced the intergrowth period with soybean and guaranteed soybean's proper plant height, larger stem diameter and optimal values of LAI and SLW, so that soybean yield was also increased. The effects of different maize densities on the stem and leaf of soybean mainly were significant before the maize harvest, but soybean yield under high maize density was significantly lower than that under middle and low maize density, and the highest maize yield was under middle density. Based on soybean and maize comprehensive values, the optimum combination of this experiment was sowed on March 21 and planting density was 5.25×10^4 plant/hm^2.
基金Supported by Double-establishment of Chengdu Cereals and Commercial Crop Industries in 2014~~
文摘The research mainly analyzed effects of waxy corn/soybean intercropping on yields of the two crops, as well as agronomic characters, and the economic benefits of the mode. The results showed that although yields of waxy corn and soybean went down by 21.19% and 31.04% per unit area, land equivalent ratio(1.48) kept higher than 1, suggesting the intercropping improves land use rate. Besides, due to the practice of intercropping, many characters of waxy corn grew, but of soybean declined. The economic benefits from high to low were waxy corn/soybean intercropping, monoculture of waxy corn, and monoculture of soybean.
基金Supported by the China Agriculture Research System(CARS-09)the Technological Innovation and Industrialization Project for the Rural Area of Nantong City,Jiangsu Province(H12014012)~~
文摘The high-efficiency planting mode for five crops a year of fresh edible "faba bean/spring maize+soybean-autumn maize/autumn soybean" was introduced, and its yield and economic benefits were compared with the planting mode of three crops a year of "faba bean-spring maize/red bean". The results showed that the planting method for fresh edible "faba bean/spring maize+soybean-autumn maize/autumn soybean" was much easier to operate with the input-output ratio of about185.6%, and its yield and economic benefits were 2.09 and 1.83 times of that of the planting mode for three crops a year, significantly improving the agricultural yield and income of farmers. In addition, the cropping index of the planting mode for fresh edible fresh edible "faba bean/spring maize +soybean-autumn maize/autumn soybean" reached up to 350%, and planting faba bean once a year and soybean twice a year could make the biological fixation amount of nitrogen increase 350-450kg/m^2, which equaled to up to 700 kg/m^2 of urea, showing significant ecological and social benefits. Based on the comparison results, the high-yield culture techniques of the planting mode of fresh edible "faba bean/spring maize+soybean-autumn maize/autumn soybean" were summarized.
基金Supported by the National Transformation Project for Agriculture Science and Technology Achievements(2011GB2C300011)the National Science and Technology Funds for Agriculture during the Twelfth Five-year Plan(2011BAD35B06-4)~~
文摘[Objective] The aim was to discuss the group dry matter accumulation and economic benefits under the patterns of intercropping maize (Zea mays L.) with soy-bean [Glycine max (L.) Merril ]. [Methods] Zhengdan-958 and Luhuang-1 were used as the testing breeds to study the effects of intercropping patterns on dry matter accumulation and transportation of maize and soybean in Huang-huai-hai. [Results] For maize, the dry matter accumulation amounts per hectare of intercropping was significant higher than that of the monoculture patterns, especial y after silking, when it reached extremely level; while for soybean, the dry matter accumulation amounts before flowering and after flowering of monocropping were al significantly higher than that of the intercropping patterns. For both maize and soybean, the transfer amounts of monocropping were al significantly or extremely significantly higher than that of intercropping; and the transfer ratio of maize intercropping was 0.59% higher than that of maize monocropping, while for soybean, it was 4.74% higher. Fitted dry matter accumulation with Logistic equation, it showed that the difference in maximum dry matter accumulation rate between maize monocropping and intercropping reached significant level, while for soybean, the maximum dry matter accumulation rate and its appearance time as wel as duration time between intercropping and monocropping were al reached significant level. The total land equivalent ratio of intercropping was 1.30. From yield and output value, the total yield of intercropping were 10.97 t/hm2, 0.64% and 326.85% higher than monocropping of maize and soy-bean, respectively. The total output value of intercropping was 25 796.23 yuan/hm2, respectively 12.67% and 104.68% higher than of maize and soybean monocropping. [Conclusion] The study lays a basis for improving grain yield and economic benefits.
基金Project supported by the Director Fund of Northeast Institute of Geography and Agroecology, Chinese Academy of Sciencesthe National High Technology Research and Development Program (863 Program) of China (No. 2006AA10Z424).
文摘Application of phosphate-solubilizing microorganisms (PSMs) has been reported to increase P uptake and plant growth. However, no information is available regarding the ecological consequences of the inoculation with PSMs. The effect of inoculation with phosphate-solubilizing fungal (PSF) isolates Aspergillus niger P39 and Penicillium oxalicum P66 on the bacterial communities in the rhizospheres of maize (Zea mays L. 'Haiyu 6') and soybean (Glycine max Merr. 'Heinong 35') was examined using culture-dependent methods as well as a culture-independent method, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Compared with the control, the number of culturable microbes for soybean was significantly greater with P39, whereas for maize, the same was significantly greater with P66. In addition, a greater number of microbes were found in the rhizosphere of maize compared with soybean. The fingerprint of DGGE for 16S rDNA indicated that inoculation with PSF also increased bacterial communities, with the P66 treatment having higher numbers of DGGE bands and a higher Shannon-Weaver diversity index compared with P39; the composition of the microbial community was also more complex with the P66 treatment. Overall, complex interactions between plant species and exotic PSMs affected the structure of the bacterial community in the rhizosphere, but plant species were more important in determining the bacterial community structure than the introduction of exotic microorganisms.