A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and th...A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and then a layer of copper was electrodeposited on it.By repeating the above process,the laminar Cu/SACNT composite which contains dozens or hundreds of layers of copper and SACNT films was obtained.The thickness of a single copper layer was controlled by adjusting the process parameter easily and the thinnest layer is less than 2 μm.The microscopic observation shows that the directional alignment structure of SACNT is retained in the composite perfectly.The mechanical and electrical properties testing results show that the tensile and yield strengths of composites are improved obviously compared with those of pure copper,and the high conductivity is retained.This technology is a potential method to make applicable MMC which characterizes high volume fraction and directional alignment of carbon nanotubes.展开更多
Highly biocompatible superparamagnetic Fe3O4 nanoparticles were synthesized by amide of folic acid (FA) ligands and the NH2-group onto the surface of Fe3O4 nanoparticles. The as-synthesized folate-conjugated Fe3O4 n...Highly biocompatible superparamagnetic Fe3O4 nanoparticles were synthesized by amide of folic acid (FA) ligands and the NH2-group onto the surface of Fe3O4 nanoparticles. The as-synthesized folate-conjugated Fe3O4 nanoparticles were characterized by X-ray diffraction diffractometer, transmission electron microscope, FT-IR spectrometer, vibrating sample magnetometer, and dynamic light scattering instrument. The in vivo labeling effect of folate-conjugated Fe3O4 nanoparticles on the hepatoma cells was investigated in tumor-bearing rat. The results demonstrate that the as-prepared nanoparticles have cubic structure of Fe3O4 with a particle size of about 8 nm and hydrated diameter of 25.7 nm at a saturation magnetization of 51 A·m2/kg. These nanoparticles possess good physiological stability, low cytotoxicity on human skin fibroblasts and negligible effect on Wistar rats at the concentration as high as 3 mg/kg body mass. The folate-conjugated Fe3O4 nanoparticles could be effectively mediated into the human hepatoma Bel 7402 cells through the binding of folate and folic acid receptor, enhancing the signal contrast of tumor tissue and surrounding normal tissue in MRI imaging. It is in favor of the tumor cells labeling, tracing, magnetic resonance imaging (MRI) target detection and magnetic hyperthermia.展开更多
The super-aligned carbon nanotube(SACNT)films reinforced copper(Cu)laminar composites with different orientationsof CNT ply were fabricated by electrodeposition.The results show that the tensile strength and yield str...The super-aligned carbon nanotube(SACNT)films reinforced copper(Cu)laminar composites with different orientationsof CNT ply were fabricated by electrodeposition.The results show that the tensile strength and yield strength of cross-ply compositewith5.0%(volume fraction)of SACNT reach maximum of336.3MPa and246.0MPa respectively,increased by74.0%and124.5%compared with pure Cu prepared with the same method.Moreover,the electrical conductivities of all the prepared composites areover75%IACS.The result of TEM analysis shows that the size of Cu grain and the thickness of twin lamellae can be reduced byadding SACNT,and the refining effect in cross-ply composites is more significant than that in unidirectional ply composites.Theenhanced strength of the Cu/SACNT composites comes from not only the reinforcing effect of SACNT films but also the additionalstrengthening of the Cu grain refinement caused by CNT orientation.展开更多
Co−TiO2 nanocomposite films were prepared via magnetron sputtering at various substrate temperatures.The films comprise Co particles dispersed in an amorphous TiO2 matrix and exhibit coexisting ferromagnetic and super...Co−TiO2 nanocomposite films were prepared via magnetron sputtering at various substrate temperatures.The films comprise Co particles dispersed in an amorphous TiO2 matrix and exhibit coexisting ferromagnetic and superparamagnetic properties.When the substrate temperature increases from room temperature to 400℃,Co particles gradually grow,and the degree of Co oxidation significantly decreases.Consequently,the saturation magnetization increases from 0.13 to 0.43 T at the same Co content by increasing the substrate temperature from room temperature to 400℃.At a high substrate temperature,conductive pathways form among some of the clustered Co particles.Thus,resistivity rapidly declines from 1600 to 76μΩ·m.The magnetoresistive characteristic of Co−TiO2 films is achieved even at resistivity of as low as 76μΩ·m.These results reveal that the obtained nanocomposite films have low Co oxidation,high magnetization and magnetoresistance at room temperature.展开更多
We have designed and synthesized NaGdF4:Nd^3+, Yb^3+, Tm^3+. magnetic nano- phosphors with combined dual-mode downconversion (DC) and upconversion (UC) photoluminescence upon 800 run excitation. Hexagonal-phas...We have designed and synthesized NaGdF4:Nd^3+, Yb^3+, Tm^3+. magnetic nano- phosphors with combined dual-mode downconversion (DC) and upconversion (UC) photoluminescence upon 800 run excitation. Hexagonal-phase NaGdF4:Nd^3+, Yb^3+, Tm^3+ nanocrystals (NCs) with an average size of 21 nm were synthesized using a solvothermal approach. Nd^3+, Yb^3+, Tm^3+ triple-doped NaGdF4 NCs exhibit a broad range of photoluminescence peaks covering a near infrared first/second window (860-900, 1,000, and 1,060 nm), and visible emission including blue (475 nm), green (520 and 542 nm) and yellow (587 nm) after excitation at 800 nm. A mechanism involving circulation of energy over Gd^3+ sublattices as bridge ions and final trapping by the initial activator ions (Nd^3+) has been proposed. Penetration depth studies indicate that NIR emission is easily detected even at a large tissue thickness of 10 mm. These paramagnetic nanophosphors demonstrate a large magnetization value of 1.88 emu/g at 20 kOe and longitudinal relaxivity value of 1.2537 mM-1.S-1 as a Tl-weighted magnetic resonance imaging contrast agent. These NaGdF4:Nd^3+, Yb^3+ Tm^3+ NCs are promising for applications in biological and magnetic resonance imaging.展开更多
The finite-temperature Pauli paramagnetic susceptibility of a three-dimensional ideal anyon gas obeying Haldane fractional exclusion statistics is studied analytically.Different from the result of an ideal Fermi gas,t...The finite-temperature Pauli paramagnetic susceptibility of a three-dimensional ideal anyon gas obeying Haldane fractional exclusion statistics is studied analytically.Different from the result of an ideal Fermi gas,the susceptibility of an ideal anyon gas depends on a statistical factor g in Haldane statistics model.The low-temperature and high-temperature behaviors of the susceptibility are investigated in detail.The Pauli paramagnetic susceptibility of the two-dimensional ideal anyons is also derived.It is found that the reciprocal of the susceptibility has the similar factorizable property which is exhibited in some thermodynamic quantities in two dimensions.展开更多
The potential applications of superparamagnetic iron oxide nanoparticles (SPIONs) in several nanomedical fields have attract- ed intense interest based on the cell-nano interaction. However, the mechanisms underlyin...The potential applications of superparamagnetic iron oxide nanoparticles (SPIONs) in several nanomedical fields have attract- ed intense interest based on the cell-nano interaction. However, the mechanisms underlying cell uptake, the intracellular trail, final fate and the biological effects of SPIONs have not yet been clearly elucidated. Here, we showed that multiple endocytic pathways were involved in the internalization process of SPIONs in the RAW264.7 macrophage. The internalized SPIONs were biocompatible and used three different metabolic pathways: The SPIONs were distributed to daughter cells during mito- sis; they were degraded in the lysosome and free iron was released into the intracellular iron metabolic pool; and, the intact SPIONs were potentially exocytosed out of the cells. The internalized SPIONs did not induce cell damage hut affected iron metabolism, inducing the upregulation of ferritin light chain at both the mRNA and protein levels and ferroportin 1 at the mRNA level. These results may contribute to the development of nanobiology and to the safe use of SPIONs in medicine when administered as a contrast medium or a drug delivery tool.展开更多
Theranostics, combining therapy and diagnosis, is an appealing approach for chemotherapy. In the present study, we selected paclitaxel (PTX) as a therapeutic agent, super-paramagnetic iron oxide nanoparticles (SPIO...Theranostics, combining therapy and diagnosis, is an appealing approach for chemotherapy. In the present study, we selected paclitaxel (PTX) as a therapeutic agent, super-paramagnetic iron oxide nanoparticles (SPIO) as a diagnostic agent and sterically stabilized liposomes as a carrier to prepare theranostic liposomes. The SPIO were prepared and characterized. Moreover, the sterically stabilized liposomes containing PTX and SPIO (PTX/SPIO-SSL) were prepared. The characteristics of PTX/SPIO-SSL were investigated. The results indicated that prepared SPIO exhibited super-paramagnetic and could be used for MRI. The average particle size of PTX/SPIO-SSL was about 170 rim, with a polydispersity index (PDI) less than 0.3. The zeta potential of PTX/SPIO-SSL was negative. The PTX entrapment efficiency of PTX/SPIO-SSL was more than 98%. The TEM results indicated the spherical structure and dense SPIO content in PTX/SPIO-SSL. The in vitro release of PTX from PTX/SPIO-SSL and PTX-SSL was almost identical at both pH 6.8 and 7.4. In conclusion, the PTX/SPIO-SSL were prepared and characterized in vitro. The anti-tumor and diagnostic activity of PTX/SPIO-SSL should be investigated deeply in future study.展开更多
Multifunctional nanoparticles combining diagnostic and therapeutic agents into a single platform make cancer theranostics possible and have attracted wide interests in the field. In this study, a multifunctional nanoc...Multifunctional nanoparticles combining diagnostic and therapeutic agents into a single platform make cancer theranostics possible and have attracted wide interests in the field. In this study, a multifunctional nanocomposite based on dextran and superparamagnetic iron oxide nanoparticles (SPIO) was prepared for drug delivery and magnetic resonance imaging (MRI). Amphiphilic dextran was synthesized by grafting stearyl acid onto the carbohydrate backbone, and micelle was formed by the resulted amphiphilic dextran with low critical micelle concentration at 1.8 mg L^-1. Doxorubicin (DOX) and a cluster of the manganese-doped iron oxide nanoparticles (Mn-SPIO) nanocrystals were then coencapsulated successfully inside the core of dextran micelles, resulting in nanocomposites with diameter at about 100 nm. Cell culture experiments demonstrated the potential of these Mn-SPIO/DOX nanocomposites as an effective multifunctional nanoplat- lk)rm for the delivery of anticancer drug DOX with a loading content (DLC) of 16 %. Confocal laser scanning microscopy reveals that the Mn-SPIO/DOX had excellent internalization ability against MCF-7/Adr cells after 2-h labeling compared with flee DOX.HCI. Under a 3.0-T MRI scanner, Mn-SPIO/ DOX nanocomposite-labeled cells in gelatin phantom show much darker images than the control. Their transverse relaxation (T2) rate is also significantly higher than that of the control cells (33.9 versus 2.3 s^-1). Our result offers an effective strategy to treat MCF-7/Adr at optimized low dosages with imaging capability.展开更多
Superparamagnetic iron oxide (SPIO) nanoparticle clusters are one unique form which can enhance magnetic relaxivity and improve the magnetic resonance imaging contrast at the same iron concentration, comparing to si...Superparamagnetic iron oxide (SPIO) nanoparticle clusters are one unique form which can enhance magnetic relaxivity and improve the magnetic resonance imaging contrast at the same iron concentration, comparing to single SPIO nanoparticles. Controlling of cluster size and other structural parameters have drawn great interests in this field to further improve their magnetic properties. In this study, we investigated how the interparticle distance (also known as neighbor distance) of SP10 nanocrystals within clusters affect their magnetic relaxation behaviors. To adjust the neighbor distance, different amount of cholesterol (CHO) was chosen as model spacers embedded into SPIO nanocluster systems with the help of amphiphilic diblock copolymer poly(ethylene glyco)-polyester. Small- angle X-ray scattering was applied to quantify the neighbor distance of SPIO clusters. The results demonstrated that the averaged SPIO nanocrystal neighbor distance of nan- oclusters increased with higher amount of added CHO. Moreover, these SPIO nanocrystal clusters had the promi- nent magnetic relaxation properties. Simultaneously, con- trolling of SPIO nanocrystal neighbor distance can regulate the saturation magnetization (Ms) and magnetic resonance (MR) T2 relaxation of the aggregation, and ultimately obtain better MR contrast effects with decreased neighbor distance.展开更多
The magnetic transitions in graphene oxide (GO) have been investigated experimentally. Micron-sized GO flakes exhibit dominant diamagnetism accompanied by weak ferromagnetism at room temperature. However, when the l...The magnetic transitions in graphene oxide (GO) have been investigated experimentally. Micron-sized GO flakes exhibit dominant diamagnetism accompanied by weak ferromagnetism at room temperature. However, when the lateral dimensions of GO flakes are reduced from micron-size to nano-size, a clear transition from dominant diamagnetism to ferromagnetism is observed. After reducing the GO chemically or thermally, the dominant magnetic properties are not altered markedly except for the gradual enhancement of ferromagnetic components. In contrast, at 2 K, significant paramagnetism is present in both the micron-sized and nano-sized GO sheets. The effects of different functional groups on magnetic transitions in graphene derivatives have been further investigated using on hydroxyl-, carboxyl-, amino- and thiol- functionalized graphene. The results reveal that significant diamagnetism with weak ferromagnetism is present at room temperature in all of these functionalized graphene derivatives and the ability of different functional groups to introduce magnetic moments follows the order -SH 〉 --OH 〉 -COOH, -NH2. Notably, at 5 K, diamagnetism, paramagnetism and ferromagnetism coexist in thiol-, hydroxyl- and carboxyl-functionalized graphene, while amino-graphene exhibits dominant paramagnetism, analogous to the low-temperature magnetism in GO. These results indicate that diamagnetism, paramagnetism and ferromagnetism can coexist in graphene derivatives and magnetic transitions among the three states can be achieved which depend on edge states, vacancies, chemical doping and the attached functional groups. The results obtained may help settle the current controversy about the magnetism of graphene-related materials.展开更多
基金Project(20111080980)supported by the Initiative Scientific Research Program,Tsinghua University,China
文摘A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and then a layer of copper was electrodeposited on it.By repeating the above process,the laminar Cu/SACNT composite which contains dozens or hundreds of layers of copper and SACNT films was obtained.The thickness of a single copper layer was controlled by adjusting the process parameter easily and the thinnest layer is less than 2 μm.The microscopic observation shows that the directional alignment structure of SACNT is retained in the composite perfectly.The mechanical and electrical properties testing results show that the tensile and yield strengths of composites are improved obviously compared with those of pure copper,and the high conductivity is retained.This technology is a potential method to make applicable MMC which characterizes high volume fraction and directional alignment of carbon nanotubes.
基金Project(2011JQ028)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(2008SK3114,2010SK3113)supported by Hunan Provincial Science&Technology Plan,China+2 种基金Project(B2007086)supported by Science&Research Funds of Hunan Health Department,ChinaProject(12JJ5057)supported by Natural Science Foundation of Hunan Province,ChinaProjects(XCX1119,XCX12073)supported by University Students Innovative Experiment Plan Project of Hunan Agricultural University,China
文摘Highly biocompatible superparamagnetic Fe3O4 nanoparticles were synthesized by amide of folic acid (FA) ligands and the NH2-group onto the surface of Fe3O4 nanoparticles. The as-synthesized folate-conjugated Fe3O4 nanoparticles were characterized by X-ray diffraction diffractometer, transmission electron microscope, FT-IR spectrometer, vibrating sample magnetometer, and dynamic light scattering instrument. The in vivo labeling effect of folate-conjugated Fe3O4 nanoparticles on the hepatoma cells was investigated in tumor-bearing rat. The results demonstrate that the as-prepared nanoparticles have cubic structure of Fe3O4 with a particle size of about 8 nm and hydrated diameter of 25.7 nm at a saturation magnetization of 51 A·m2/kg. These nanoparticles possess good physiological stability, low cytotoxicity on human skin fibroblasts and negligible effect on Wistar rats at the concentration as high as 3 mg/kg body mass. The folate-conjugated Fe3O4 nanoparticles could be effectively mediated into the human hepatoma Bel 7402 cells through the binding of folate and folic acid receptor, enhancing the signal contrast of tumor tissue and surrounding normal tissue in MRI imaging. It is in favor of the tumor cells labeling, tracing, magnetic resonance imaging (MRI) target detection and magnetic hyperthermia.
基金Project(20111080980) supported by the Initiative Scientific Research Program,Tsinghua University,ChinaProject(2013AA031201) supported by the High Technology Research and Development Program of China
文摘The super-aligned carbon nanotube(SACNT)films reinforced copper(Cu)laminar composites with different orientationsof CNT ply were fabricated by electrodeposition.The results show that the tensile strength and yield strength of cross-ply compositewith5.0%(volume fraction)of SACNT reach maximum of336.3MPa and246.0MPa respectively,increased by74.0%and124.5%compared with pure Cu prepared with the same method.Moreover,the electrical conductivities of all the prepared composites areover75%IACS.The result of TEM analysis shows that the size of Cu grain and the thickness of twin lamellae can be reduced byadding SACNT,and the refining effect in cross-ply composites is more significant than that in unidirectional ply composites.Theenhanced strength of the Cu/SACNT composites comes from not only the reinforcing effect of SACNT films but also the additionalstrengthening of the Cu grain refinement caused by CNT orientation.
基金Project(2016YFE0205700)supported by the National Key Research and Development Program of ChinaProject(18JCYBJC18000)supported by the Natural Science Foundation of Tianjin City,China。
文摘Co−TiO2 nanocomposite films were prepared via magnetron sputtering at various substrate temperatures.The films comprise Co particles dispersed in an amorphous TiO2 matrix and exhibit coexisting ferromagnetic and superparamagnetic properties.When the substrate temperature increases from room temperature to 400℃,Co particles gradually grow,and the degree of Co oxidation significantly decreases.Consequently,the saturation magnetization increases from 0.13 to 0.43 T at the same Co content by increasing the substrate temperature from room temperature to 400℃.At a high substrate temperature,conductive pathways form among some of the clustered Co particles.Thus,resistivity rapidly declines from 1600 to 76μΩ·m.The magnetoresistive characteristic of Co−TiO2 films is achieved even at resistivity of as low as 76μΩ·m.These results reveal that the obtained nanocomposite films have low Co oxidation,high magnetization and magnetoresistance at room temperature.
文摘We have designed and synthesized NaGdF4:Nd^3+, Yb^3+, Tm^3+. magnetic nano- phosphors with combined dual-mode downconversion (DC) and upconversion (UC) photoluminescence upon 800 run excitation. Hexagonal-phase NaGdF4:Nd^3+, Yb^3+, Tm^3+ nanocrystals (NCs) with an average size of 21 nm were synthesized using a solvothermal approach. Nd^3+, Yb^3+, Tm^3+ triple-doped NaGdF4 NCs exhibit a broad range of photoluminescence peaks covering a near infrared first/second window (860-900, 1,000, and 1,060 nm), and visible emission including blue (475 nm), green (520 and 542 nm) and yellow (587 nm) after excitation at 800 nm. A mechanism involving circulation of energy over Gd^3+ sublattices as bridge ions and final trapping by the initial activator ions (Nd^3+) has been proposed. Penetration depth studies indicate that NIR emission is easily detected even at a large tissue thickness of 10 mm. These paramagnetic nanophosphors demonstrate a large magnetization value of 1.88 emu/g at 20 kOe and longitudinal relaxivity value of 1.2537 mM-1.S-1 as a Tl-weighted magnetic resonance imaging contrast agent. These NaGdF4:Nd^3+, Yb^3+ Tm^3+ NCs are promising for applications in biological and magnetic resonance imaging.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 11275082 and 11178001
文摘The finite-temperature Pauli paramagnetic susceptibility of a three-dimensional ideal anyon gas obeying Haldane fractional exclusion statistics is studied analytically.Different from the result of an ideal Fermi gas,the susceptibility of an ideal anyon gas depends on a statistical factor g in Haldane statistics model.The low-temperature and high-temperature behaviors of the susceptibility are investigated in detail.The Pauli paramagnetic susceptibility of the two-dimensional ideal anyons is also derived.It is found that the reciprocal of the susceptibility has the similar factorizable property which is exhibited in some thermodynamic quantities in two dimensions.
基金supported by the National Basic Research Program of China,Ministry of Science and Technology of China (Grant Nos. 2006CB933202 and 2011CB933504) the National High Technology Research and Development Program of China (Grant No. 2008AA02Z425)a grant from the National Natural Science Foundation of China (Grant No.81071072)
文摘The potential applications of superparamagnetic iron oxide nanoparticles (SPIONs) in several nanomedical fields have attract- ed intense interest based on the cell-nano interaction. However, the mechanisms underlying cell uptake, the intracellular trail, final fate and the biological effects of SPIONs have not yet been clearly elucidated. Here, we showed that multiple endocytic pathways were involved in the internalization process of SPIONs in the RAW264.7 macrophage. The internalized SPIONs were biocompatible and used three different metabolic pathways: The SPIONs were distributed to daughter cells during mito- sis; they were degraded in the lysosome and free iron was released into the intracellular iron metabolic pool; and, the intact SPIONs were potentially exocytosed out of the cells. The internalized SPIONs did not induce cell damage hut affected iron metabolism, inducing the upregulation of ferritin light chain at both the mRNA and protein levels and ferroportin 1 at the mRNA level. These results may contribute to the development of nanobiology and to the safe use of SPIONs in medicine when administered as a contrast medium or a drug delivery tool.
基金Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20120001110012)
文摘Theranostics, combining therapy and diagnosis, is an appealing approach for chemotherapy. In the present study, we selected paclitaxel (PTX) as a therapeutic agent, super-paramagnetic iron oxide nanoparticles (SPIO) as a diagnostic agent and sterically stabilized liposomes as a carrier to prepare theranostic liposomes. The SPIO were prepared and characterized. Moreover, the sterically stabilized liposomes containing PTX and SPIO (PTX/SPIO-SSL) were prepared. The characteristics of PTX/SPIO-SSL were investigated. The results indicated that prepared SPIO exhibited super-paramagnetic and could be used for MRI. The average particle size of PTX/SPIO-SSL was about 170 rim, with a polydispersity index (PDI) less than 0.3. The zeta potential of PTX/SPIO-SSL was negative. The PTX entrapment efficiency of PTX/SPIO-SSL was more than 98%. The TEM results indicated the spherical structure and dense SPIO content in PTX/SPIO-SSL. The in vitro release of PTX from PTX/SPIO-SSL and PTX-SSL was almost identical at both pH 6.8 and 7.4. In conclusion, the PTX/SPIO-SSL were prepared and characterized in vitro. The anti-tumor and diagnostic activity of PTX/SPIO-SSL should be investigated deeply in future study.
基金supported by the National Basic Research Program of China(2013CB933903)the National Key Technology Research and Development Program(2012BAI23B08)+1 种基金the National Natural Science Foundation of China(51173117)the Scientific Research Start-up Fund of Kunming University of Science and Technology(KKSY201305089)
文摘Multifunctional nanoparticles combining diagnostic and therapeutic agents into a single platform make cancer theranostics possible and have attracted wide interests in the field. In this study, a multifunctional nanocomposite based on dextran and superparamagnetic iron oxide nanoparticles (SPIO) was prepared for drug delivery and magnetic resonance imaging (MRI). Amphiphilic dextran was synthesized by grafting stearyl acid onto the carbohydrate backbone, and micelle was formed by the resulted amphiphilic dextran with low critical micelle concentration at 1.8 mg L^-1. Doxorubicin (DOX) and a cluster of the manganese-doped iron oxide nanoparticles (Mn-SPIO) nanocrystals were then coencapsulated successfully inside the core of dextran micelles, resulting in nanocomposites with diameter at about 100 nm. Cell culture experiments demonstrated the potential of these Mn-SPIO/DOX nanocomposites as an effective multifunctional nanoplat- lk)rm for the delivery of anticancer drug DOX with a loading content (DLC) of 16 %. Confocal laser scanning microscopy reveals that the Mn-SPIO/DOX had excellent internalization ability against MCF-7/Adr cells after 2-h labeling compared with flee DOX.HCI. Under a 3.0-T MRI scanner, Mn-SPIO/ DOX nanocomposite-labeled cells in gelatin phantom show much darker images than the control. Their transverse relaxation (T2) rate is also significantly higher than that of the control cells (33.9 versus 2.3 s^-1). Our result offers an effective strategy to treat MCF-7/Adr at optimized low dosages with imaging capability.
基金supported by the National Key Basic Research Program of China (2013CB933903)the National High Technology R&D Program of China (2012BAI23B08)the National Natural Science Foundation of China (20974065, 51173117 and 50830107)
文摘Superparamagnetic iron oxide (SPIO) nanoparticle clusters are one unique form which can enhance magnetic relaxivity and improve the magnetic resonance imaging contrast at the same iron concentration, comparing to single SPIO nanoparticles. Controlling of cluster size and other structural parameters have drawn great interests in this field to further improve their magnetic properties. In this study, we investigated how the interparticle distance (also known as neighbor distance) of SP10 nanocrystals within clusters affect their magnetic relaxation behaviors. To adjust the neighbor distance, different amount of cholesterol (CHO) was chosen as model spacers embedded into SPIO nanocluster systems with the help of amphiphilic diblock copolymer poly(ethylene glyco)-polyester. Small- angle X-ray scattering was applied to quantify the neighbor distance of SPIO clusters. The results demonstrated that the averaged SPIO nanocrystal neighbor distance of nan- oclusters increased with higher amount of added CHO. Moreover, these SPIO nanocrystal clusters had the promi- nent magnetic relaxation properties. Simultaneously, con- trolling of SPIO nanocrystal neighbor distance can regulate the saturation magnetization (Ms) and magnetic resonance (MR) T2 relaxation of the aggregation, and ultimately obtain better MR contrast effects with decreased neighbor distance.
基金This work is supported by the National Natural Science Foundation of China (No. 51372133), the Beijing Science and Technology Program (No. D141100000514001), the National Program on Key Basic Research Projects (Nos. 2013CB934201, 2011CB013000), and the Tsinghua University Initiative Scientific Research Program (No. 2012Z02102).
文摘The magnetic transitions in graphene oxide (GO) have been investigated experimentally. Micron-sized GO flakes exhibit dominant diamagnetism accompanied by weak ferromagnetism at room temperature. However, when the lateral dimensions of GO flakes are reduced from micron-size to nano-size, a clear transition from dominant diamagnetism to ferromagnetism is observed. After reducing the GO chemically or thermally, the dominant magnetic properties are not altered markedly except for the gradual enhancement of ferromagnetic components. In contrast, at 2 K, significant paramagnetism is present in both the micron-sized and nano-sized GO sheets. The effects of different functional groups on magnetic transitions in graphene derivatives have been further investigated using on hydroxyl-, carboxyl-, amino- and thiol- functionalized graphene. The results reveal that significant diamagnetism with weak ferromagnetism is present at room temperature in all of these functionalized graphene derivatives and the ability of different functional groups to introduce magnetic moments follows the order -SH 〉 --OH 〉 -COOH, -NH2. Notably, at 5 K, diamagnetism, paramagnetism and ferromagnetism coexist in thiol-, hydroxyl- and carboxyl-functionalized graphene, while amino-graphene exhibits dominant paramagnetism, analogous to the low-temperature magnetism in GO. These results indicate that diamagnetism, paramagnetism and ferromagnetism can coexist in graphene derivatives and magnetic transitions among the three states can be achieved which depend on edge states, vacancies, chemical doping and the attached functional groups. The results obtained may help settle the current controversy about the magnetism of graphene-related materials.