期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
基于优化初始类中心点的K-means改进算法 被引量:10
1
作者 秦钰 荆继武 +1 位作者 向继 张爱华 《中国科学院研究生院学报》 CAS CSCD 2007年第6期771-777,共7页
K-means算法是一种重要的聚类算法,在网络信息处理领域有着广泛的应用.由于K-means算法终止于一个局部最优状态,所以初始类中心点的选择会在很大程度上影响其聚类效果.提出了一种K-means算法的改进算法,首先探测数据集中的相对密集区域... K-means算法是一种重要的聚类算法,在网络信息处理领域有着广泛的应用.由于K-means算法终止于一个局部最优状态,所以初始类中心点的选择会在很大程度上影响其聚类效果.提出了一种K-means算法的改进算法,首先探测数据集中的相对密集区域,再利用这些密集区域生成初始类中心点.该方法能够很好地排除类边缘点和噪声点的影响,并且能够适应数据集中各个实际类别密度分布不平衡的情况,最终获得较好的聚类效果. 展开更多
关键词 K-MEANS 初始类中心点
下载PDF
基于约束满足的大数据聚类中心点确定仿真 被引量:5
2
作者 李沐春 贾宗维 《计算机仿真》 北大核心 2019年第9期410-413,共4页
针对传统的大数据聚类中心点确定方法存在用时较长、准确性较低等问题,提出了一种基于约束满足的大数据聚类中心点确定方法。将数据分布密度与增加数据关键点密度权值两种方法相结合,对大数据初始聚类中心进行K-means聚类,并获取最优聚... 针对传统的大数据聚类中心点确定方法存在用时较长、准确性较低等问题,提出了一种基于约束满足的大数据聚类中心点确定方法。将数据分布密度与增加数据关键点密度权值两种方法相结合,对大数据初始聚类中心进行K-means聚类,并获取最优聚类数目。通过最优聚类数目构建微型相似性矩阵,采用Gabow算法提取该矩阵所对应连通图的各个强连通分支。在强连通分支的基础之上,通过约束传播算法获取整个数据集的点对相似度,并利用点对相似度和奇异值分解确定大数据聚类中心点,实现数据聚类。实验结果表明,所提方法对具有更高的聚类准确性以及更低的聚类时间,适合海量数据的聚类应用。 展开更多
关键词 基于约束满足 大数据 类中心点确定
下载PDF
面向大规模数据精简的聚类中心点优化和FCM算法设计 被引量:5
3
作者 江文奇 黄容 +1 位作者 牟华伟 袁亚纯 《数学的实践与认识》 2021年第17期144-151,共8页
基于FCM的大规模数据聚类算法设计中,聚类中心点选择的迭代次数较多易于造成算法模型伸缩性不强、敏感性较弱和陷入局部最小值的难题.以大规模数据点精简算法设计为切入点,研究初始聚类中心点选择与FCM模型设计.首先,基于K近邻思想提出... 基于FCM的大规模数据聚类算法设计中,聚类中心点选择的迭代次数较多易于造成算法模型伸缩性不强、敏感性较弱和陷入局部最小值的难题.以大规模数据点精简算法设计为切入点,研究初始聚类中心点选择与FCM模型设计.首先,基于K近邻思想提出了数据点精简算法,获得精简之后的代表点集合.其次,兼顾原始数据点的稀疏程度和精简后代表点的分布特征,提出了基于密度的初始聚类中心点选取规则和具体步骤.再次,基于代表点集合和初始聚类中心点结果,给出了一种精简再融合的两阶段聚类算法.最后,运用仿真方法说明了本方法的有效性和优越性. 展开更多
关键词 算法 FCM 初始聚类中心点 K互近邻 数据精简
原文传递
基于K-中心点聚类的模糊航迹关联算法 被引量:6
4
作者 白浩 赵凯 +1 位作者 王越 薄拾 《计算机应用》 CSCD 北大核心 2015年第A01期310-312,共3页
为提高目标航迹相交和近距平行状态时航迹关联的正确率,提出了一种基于K-中心点聚类的模糊航迹关联算法。该算法基于K-中心点聚类算法,将系统航迹作为聚类中心,采用局部航迹与系统航迹关联的策略,为描述航迹间的相似性,采用模糊分析方法... 为提高目标航迹相交和近距平行状态时航迹关联的正确率,提出了一种基于K-中心点聚类的模糊航迹关联算法。该算法基于K-中心点聚类算法,将系统航迹作为聚类中心,采用局部航迹与系统航迹关联的策略,为描述航迹间的相似性,采用模糊分析方法,综合考虑各个因素的影响,构造模糊关联矩阵,并利用历史信息和先验知识进行航迹关联。仿真表明该算法在航迹相交状态下,相交时刻关联正确率比K-medoids聚类算法提高5%左右,近距平行状态下关联正确率的收敛速度优于K-medoids聚类算法。 展开更多
关键词 航迹关联 系统航迹 K-中心 模糊分析
下载PDF
基于免疫—中心点聚类算法的无功电压控制分区 被引量:35
5
作者 熊虎岗 程浩忠 孔涛 《电力系统自动化》 EI CSCD 北大核心 2007年第2期22-26,共5页
针对传统分区方法电气距离定义的缺点,提出一种新的电气距离即空间电气距离。依据系统中各节点之间无功电压变化关系,将系统各节点映射到一个多维空间中,节点之间的空间距离便是其电气距离,依据此距离将各节点进行归类,从而把无功电压... 针对传统分区方法电气距离定义的缺点,提出一种新的电气距离即空间电气距离。依据系统中各节点之间无功电压变化关系,将系统各节点映射到一个多维空间中,节点之间的空间距离便是其电气距离,依据此距离将各节点进行归类,从而把无功电压控制分区问题转化为数学上的空间聚类问题。针对无功电压控制分区的特点并借鉴聚类算法,提出免疫—中心点聚类的无功电压控制分区算法并将其运用于IEEE118节点系统,对分区结果进行分析并与其他算法结果比较,验证所提出的算法的准确性和可行性。 展开更多
关键词 无功电压控制分区 空间电气距离 免疫-中心算法 电力系统
下载PDF
基于k中心点聚类的图像二值化方法 被引量:10
6
作者 唐涛 覃晓 +1 位作者 易宗剑 韩冬越 《计算机科学与探索》 CSCD 北大核心 2015年第2期234-241,共8页
在机器视觉和模式识别的研究中,将图像变换为二值图像是能够更高效识别图像中的特定区域或者目标的关键。提出了一种基于k中心点聚类算法的图像二值化方法(image binarization k-medoids-based clustering,IBk MC)。该方法使用基于距离... 在机器视觉和模式识别的研究中,将图像变换为二值图像是能够更高效识别图像中的特定区域或者目标的关键。提出了一种基于k中心点聚类算法的图像二值化方法(image binarization k-medoids-based clustering,IBk MC)。该方法使用基于距离的平方和误差作为聚类质量度量,根据图像二值化的领域知识将k的值取为2,自然地将图像分为前景类和背景类两类。实验结果证明,针对复杂环境下的自然图像,该方法在效果和效率上优于OSTU(最大类间方差)阈值化方法。 展开更多
关键词 图像二值化 k中心 阈值
下载PDF
推进式优化特征权重的K-中心点聚类方法 被引量:1
7
作者 陈新泉 《计算机工程与应用》 CSCD 北大核心 2011年第29期175-181,204,共8页
为获得更贴近于混合属性数据点集空间的相异性度量,从而探测出数据点集的更有意义的聚类分布,提出了一种推进式优化特征权重的K-中心点聚类算法。对该聚类算法进行了必要的讨论,给出其时间复杂度分析及算法收敛性分析。为实现该聚类算... 为获得更贴近于混合属性数据点集空间的相异性度量,从而探测出数据点集的更有意义的聚类分布,提出了一种推进式优化特征权重的K-中心点聚类算法。对该聚类算法进行了必要的讨论,给出其时间复杂度分析及算法收敛性分析。为实现该聚类算法的特征权重优化步骤,给出了二种不同的特征权重优化方法和几个自适应优化距离权重系数、目标函数系数的方法。这些优化方法在一定的理论层次上解决了相异性度量的自适应优化问题。通过几个UCI标准数据集验证了该聚类算法有时能取得更好的聚类质量,从而说明该加权聚类算法具有一定的有效性。给出了几点研究展望,为下一步的研究指明了方向。 展开更多
关键词 相异性度量 K-中心 有序属性 无序属性 混合属性
下载PDF
支持向量和多中心点:非线性聚类的两大方法
8
作者 王昌栋 赖剑煌 《数据挖掘》 2013年第4期41-49,共9页
作为数据挖掘的基础方法之一,数据聚类被广泛应用各个不同领域,例如计算机科学、医学、社会科学和经济学等。根据类的样本点的分布,数据聚类问题通常可以划分成线性可分聚类和非线性可分聚类。由于现实世界的数据分布流形的复杂性,非线... 作为数据挖掘的基础方法之一,数据聚类被广泛应用各个不同领域,例如计算机科学、医学、社会科学和经济学等。根据类的样本点的分布,数据聚类问题通常可以划分成线性可分聚类和非线性可分聚类。由于现实世界的数据分布流形的复杂性,非线性聚类是最流行和最被广泛研究的聚类问题之一。本文首先从四个角度对非线性聚类的近期工作做一个简要的综述,包括基于核的聚类算法、多中心点聚类算法、基于图的聚类算法以及基于支持向量的聚类算法。接着,我们将特别地介绍我们在非线性聚类研究方面的两个主要工作,分别是位置正则化的支持向量聚类(PSVC)以及多中心点近邻传播算法(MEAP)。我们将介绍这些方法的优势与局限性,同时指出未来的研究方向。 展开更多
关键词 非线性聚 核聚 中心 PSVC MEAP
下载PDF
基于K-中心点聚类算法的论坛信息识别技术研究 被引量:3
9
作者 王燕 吴灏 毛天宇 《计算机工程与设计》 CSCD 北大核心 2009年第1期210-212,共3页
提出了一种从非确定结构的论坛页面自动获取信息区域的方法。该方法在对K-中心点聚类算法的研究基础上克服了算法中固定簇数的缺陷,并在算法的簇中心距离计算中引入Smith-Waterman改进算法,提高了算法聚类的精确度。通过对大量论坛网页... 提出了一种从非确定结构的论坛页面自动获取信息区域的方法。该方法在对K-中心点聚类算法的研究基础上克服了算法中固定簇数的缺陷,并在算法的簇中心距离计算中引入Smith-Waterman改进算法,提高了算法聚类的精确度。通过对大量论坛网页进行信息识别的实验显示,该方法切实可行并且具有较高的准确性。 展开更多
关键词 标签结构树 K-中心算法 SMITH-WATERMAN算法 最小相异度 信息识别
下载PDF
2021年世界交通运输大会水运学部会议 基于改进K中心点聚类的船舶典型轨迹自适应挖掘算法 被引量:3
10
作者 李倍莹 张新宇 +2 位作者 沈忱 姚海元 齐越 《上海海事大学学报》 北大核心 2021年第3期15-22,共8页
针对目前船舶典型轨迹的挖掘多以轨迹段作为基本单元,导致聚类对象较为复杂且聚类参数难以确定的问题,本文提出一种基于改进K中心点聚类的船舶典型轨迹自适应挖掘算法。算法以轨迹点作为聚类对象,分析船舶的航速、航向特征并对轨迹点进... 针对目前船舶典型轨迹的挖掘多以轨迹段作为基本单元,导致聚类对象较为复杂且聚类参数难以确定的问题,本文提出一种基于改进K中心点聚类的船舶典型轨迹自适应挖掘算法。算法以轨迹点作为聚类对象,分析船舶的航速、航向特征并对轨迹点进行压缩;将分段均方根误差引入K中心点聚类算法,实现聚类参数的自适应选择;提取其中的聚类中心点作为轨迹特征点,得到不同类别船舶的典型轨迹。以天津港主航道船舶自动识别系统(automatic identification system,AIS)数据为例,基于地理信息系统平台ArcGIS实现聚类结果的可视化展示。实验结果表明,运用该算法得到的船舶典型轨迹与实际相符,自适应程度较高。研究结果对于辅助船舶轨迹异常检测及挖掘海上交通特征具有重要意义。 展开更多
关键词 海上交通数据挖掘 船舶典型轨迹 K中心 轨迹特征 自适应
下载PDF
正交小波变换k-中心点聚类算法在故障诊断中的应用 被引量:11
11
作者 李卫鹏 曹岩 李丽娟 《振动与冲击》 EI CSCD 北大核心 2021年第7期291-296,共6页
k-中心点聚类算法(k-medoids cluster algorithm,KCA)是改进的机器学习聚类算法,该方法通过初始聚类中心选取和聚类中心更新,对无标记训练样本的学习揭示数据的内在性质及规律,从而区分出机器的运行状态。提出了一种正交小波变换k-中心... k-中心点聚类算法(k-medoids cluster algorithm,KCA)是改进的机器学习聚类算法,该方法通过初始聚类中心选取和聚类中心更新,对无标记训练样本的学习揭示数据的内在性质及规律,从而区分出机器的运行状态。提出了一种正交小波变换k-中心点聚类算法(orthogonal wavelet transform k-medoids clustering algorithm,OWTKCA)诊断方法,利用正交小波变换(orthogonal wavelet transformation,OWT)方法提取各细节信号作为训练样本,用KCA方法进行分类。通过滚动轴承的试验数据分类结果显示,该方法相对于没有提取特征值的KCA能有效处理复杂机械振动信号,明显提高了故障数据聚类效果,缩短了聚类时间,提高了智能诊断效率。 展开更多
关键词 k-中心算法(KCA) 机器学习 故障诊断 正交小波变换(OWT)
下载PDF
基于k中心点聚类的稳态电能质量预警阈值研究 被引量:14
12
作者 刘建华 刘艳梅 +2 位作者 冯纯纯 李锦程 张屹修 《电测与仪表》 北大核心 2018年第23期41-45,共5页
对稳态电能质量预警阈值的研究是适应电能质量预警系统的开发。针对目前稳态电能质量预警阈值确定方法复杂单一的问题,提出了一种基于k中心点聚类的稳态电能质量阈值确定方法。该方法是在对电能质量数据进行聚类分析的基础上,使用基于... 对稳态电能质量预警阈值的研究是适应电能质量预警系统的开发。针对目前稳态电能质量预警阈值确定方法复杂单一的问题,提出了一种基于k中心点聚类的稳态电能质量阈值确定方法。该方法是在对电能质量数据进行聚类分析的基础上,使用基于距离的平方和误差作为聚类质量的度量,根据阈值确定的实际情况取k=2,自然地将所有数据分为正常类和异常类两类,在此基础上进行阈值的选取。实验结果证明,在确定电能质量阈值的问题上,该方法具有良好的效果和效率。 展开更多
关键词 电能质量 预警阈值 k中心
下载PDF
基于线性回归分析的快速搜索聚类中心算法 被引量:4
13
作者 王星 呙鹏程 +1 位作者 王玉冰 程越 《系统工程与电子技术》 EI CSCD 北大核心 2017年第11期2614-2622,共9页
针对一种可快速搜索和寻找到聚类密度峰值点聚类算法的缺陷,利用线性回归与残差分析的方法进行改进,可自动、快速地确定聚类中心且优化样本点密度值。算法利用样本点的近邻信息重新度量点的密度值,提高聚类中心点位置稳定性;利用一元线... 针对一种可快速搜索和寻找到聚类密度峰值点聚类算法的缺陷,利用线性回归与残差分析的方法进行改进,可自动、快速地确定聚类中心且优化样本点密度值。算法利用样本点的近邻信息重新度量点的密度值,提高聚类中心点位置稳定性;利用一元线性回归与残差分析,快速、自动地选出聚类中心点,去除了人为选择的主观性。通过理论分析以及在人工数据集和真实数据集的对比实验表明,提出的基于线性回归分析的快速搜索聚类中心算法能够克服原有算法的缺陷,并且在聚类效果和计算时间上优于原有算法、基于密度的带有噪声的空间聚类算法(density based spatial clustering of applications with noise,DBSCAN)以及K-means算法。 展开更多
关键词 密度峰值 类中心点 线性回归 残差分析
下载PDF
基于动态双子种群的差分进化K中心点聚类算法 被引量:2
14
作者 邓斌涛 徐胜超 《计算机与现代化》 2021年第7期54-59,70,共7页
随着海量大数据的出现,聚类算法需要新型计算模式来提高计算速度与运行效率。本文提出一种基于动态双子种群的差分进化K中心点聚类算法DGP-DE-K-mediods(Dynamic Gemini Population based DE-K-mediods)。DGP-DE-K-mediods利用动态双子... 随着海量大数据的出现,聚类算法需要新型计算模式来提高计算速度与运行效率。本文提出一种基于动态双子种群的差分进化K中心点聚类算法DGP-DE-K-mediods(Dynamic Gemini Population based DE-K-mediods)。DGP-DE-K-mediods利用动态双子种群方法,解决聚类算法在维持种群密度的时候避免陷入局部最优的问题;采用差分进化(Differential Evolution,DE)算法来提高全局最优能力的强健性;基于Hadoop云平台来并行处理DGP-DE-K-mediods,加快算法的运行速度和效率;描述基于MapReduce的并行聚类算法的编程过程;DGP-DE-K-mediods利用UIC的大数据分类的案例数据和网络入侵检测这种大数据应用来仿真算法的效果。实验结果表明,与已有的聚类算法相比,DGP-DE-K-mediods在检测精度、运行时间上有明显的优势。 展开更多
关键词 云计算 并行处理 K中心 差分进化 入侵检测系统
下载PDF
动态粒度结合中心点算法在电力设备缺陷管控中的应用研究
15
作者 万少明 代金磊 《中国高新科技》 2024年第3期79-81,共3页
针对电力设备缺陷管控问题,文章研究提出了一种基于改进k-中心点聚类算法与动态粒度的电力设备缺陷管控模型。首先,利用改进的k-中心点聚类算法对设备缺陷数据进行聚类处理;然后,将动态粒度与改进算法进行结合,用于构建缺陷管控模型。... 针对电力设备缺陷管控问题,文章研究提出了一种基于改进k-中心点聚类算法与动态粒度的电力设备缺陷管控模型。首先,利用改进的k-中心点聚类算法对设备缺陷数据进行聚类处理;然后,将动态粒度与改进算法进行结合,用于构建缺陷管控模型。结果表明,缺陷管控模型的数据聚类正确率为93.07%,聚类效率能够达到90.07%,同时数据识别准确率、召回率和F1值分别为93.27%、93.52%和0.951,均优于对比方法。这说明研究构建的电力设备缺陷管控模型显著可以提高设备的可靠性和稳定性。 展开更多
关键词 动态粒度 k-中心算法 电力设备 缺陷管控
下载PDF
基于半监督的网络流量分类识别算法 被引量:12
16
作者 周文刚 陈雷霆 +1 位作者 Lubomir Bic 董仕 《电子测量与仪器学报》 CSCD 2014年第4期381-386,共6页
近年来,许多机器学习的方法被广泛应用于网络流量分类识别的问题中,结合有监督学习与无监督学习的特点,提出一种基于半监督学习的流量分类识别方法,该方法改进K均值聚类算法中初始簇中心的选取,通过基于密度因子的相似性函数来满足聚类... 近年来,许多机器学习的方法被广泛应用于网络流量分类识别的问题中,结合有监督学习与无监督学习的特点,提出一种基于半监督学习的流量分类识别方法,该方法改进K均值聚类算法中初始簇中心的选取,通过基于密度因子的相似性函数来满足聚类数据的全局一致性要求以获取更适合的初始簇中心,并通过最大似然估计方法标记聚类结果实现与相关应用类型或协议的对应匹配过程,实验结果表明,该算法提升了网络流量分类识别结果的准确性和分类识别效率,能够有效满足流量分类识别的应用需求。 展开更多
关键词 网络流量 半监督学习 识别 类中心点
下载PDF
基于最近邻原则的半监督聚类算法 被引量:7
17
作者 计华 张化祥 孙晓燕 《计算机工程与设计》 CSCD 北大核心 2011年第7期2455-2458,共4页
基于最近邻原则的半监督聚类算法是以基于最近邻的聚类中心求解算法为基础的。在基于最近邻的聚类中心求解算法中,用相似度矩阵记录数据点间的相似程度,由目标函数最小值求得聚类的类中心点。在基于最近邻原则的半监督聚类算法中,根据... 基于最近邻原则的半监督聚类算法是以基于最近邻的聚类中心求解算法为基础的。在基于最近邻的聚类中心求解算法中,用相似度矩阵记录数据点间的相似程度,由目标函数最小值求得聚类的类中心点。在基于最近邻原则的半监督聚类算法中,根据约束信息来调整相似度矩阵G,数据点间相似度的变化引起了数据点间加权欧式距离的变化,由此更新加权欧式距离矩阵M,最后执行聚类中心求解算法完成聚类。大量实验结果表明,该算法能获得较好的聚类结果。 展开更多
关键词 最近邻原则 加权欧式距离矩阵 半监督聚 类中心点 约束信息
下载PDF
分布的自动阈值密度峰值聚类算法 被引量:5
18
作者 彭启慧 宣士斌 高卿 《计算机工程与应用》 CSCD 北大核心 2021年第5期71-78,共8页
密度峰值聚类(DPC)是一种基于局部密度的聚类方法,在DPC中影响算法的效果的两个基本因素是局部密度定义和类中心选择。针对经典DPC在定义局部密度时没有考虑到邻域内样本点的分布情况,以及无法自动选择类中心等问题,提出一种基于分布的... 密度峰值聚类(DPC)是一种基于局部密度的聚类方法,在DPC中影响算法的效果的两个基本因素是局部密度定义和类中心选择。针对经典DPC在定义局部密度时没有考虑到邻域内样本点的分布情况,以及无法自动选择类中心等问题,提出一种基于分布的局部密度定义和基于最大类间差法的自动类中心选择策略。计算每个样本点截断距离圆圈内的数据点个数,同时考虑数据点的分布情况。当圈内具有相同的点个数时,如果圆圈内的数据点分布越均匀,该点的局部密度就越大,密度峰值的可能性越高。通过最大类间差法(Otsu)自动选择阈值找出类中心。实验结果表明,新算法不仅能够自动选择聚类中心,而且相比已有原算法能获得更高分类准确度。 展开更多
关键词 密度峰值 自动选择 类中心点
下载PDF
一种优化的K-Means聚类算法 被引量:3
19
作者 姚奥 张宇 《工业控制计算机》 2016年第11期120-121,124,共3页
聚类在数据挖掘领域应用广泛,但是传统的K-Means聚类算法存在对初始聚类中心点敏感以及需要人工设定聚类个数K等问题。针对这些问题,在进行评论文本特征词聚类的过程中,提出了一种改进的K-Means聚类算法,综合利用距离和密度来选择初始... 聚类在数据挖掘领域应用广泛,但是传统的K-Means聚类算法存在对初始聚类中心点敏感以及需要人工设定聚类个数K等问题。针对这些问题,在进行评论文本特征词聚类的过程中,提出了一种改进的K-Means聚类算法,综合利用距离和密度来选择初始聚类中心点,并利用评测标准来确定聚类的个数K。此外,在聚类过程中,提出了利用基于知网的相似度计算修正相似度矩阵,以及利用成对约束规则来提高聚类的准确度。实验证明,提出的方法是切实有效的。 展开更多
关键词 距离 密度 初始聚类中心点
下载PDF
基于参数优化VMD和改进K聚类判据融合的配电网故障选线方法 被引量:8
20
作者 王建元 张宇辉 刘铖 《南方电网技术》 CSCD 北大核心 2023年第7期135-145,共11页
针对现有暂态量选线方法易受到故障相角、过渡电阻、噪声、谐波及判据阈值的影响,提出基于参数优化变分模态分解(variational mode decomposition,VMD)和改进K聚类判据融合的选线方法。首先对分解过程的3个关键性参数进行动态优化,利用... 针对现有暂态量选线方法易受到故障相角、过渡电阻、噪声、谐波及判据阈值的影响,提出基于参数优化变分模态分解(variational mode decomposition,VMD)和改进K聚类判据融合的选线方法。首先对分解过程的3个关键性参数进行动态优化,利用信号频谱及分量特性确定VMD分解层数,并以算术优化算法求取最佳惩罚因子,剔除了工频、噪声及谐波干扰,再根据分解层数与各模态频谱确定模态中心频率以提高分解效率。其次,以优化后的VMD获取余弦相似度、高频幅值和直流能量作为互补的故障选线判据值。最后以改进K聚类算法实现多判据融合,弥补了单一判据的局限性。理论分析、仿真与实测结果表明,所提方法适用于分布式电源接入的电网,不受故障位置、故障相角及过渡电阻的影响,具有优异的抗谐波与噪声干扰性能。 展开更多
关键词 故障选线 变分模态分解 算术优化算法 K中心 抗噪性
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部