郊狼优化算法(Coyote optimization algorithm,COA)是最近提出的一种新颖且具有较大应用潜力的群智能优化算法,具有独特的搜索机制和能较好解决全局优化问题等优势,但在处理复杂优化问题时存在搜索效率低、可操作性差和收敛速度慢等不足...郊狼优化算法(Coyote optimization algorithm,COA)是最近提出的一种新颖且具有较大应用潜力的群智能优化算法,具有独特的搜索机制和能较好解决全局优化问题等优势,但在处理复杂优化问题时存在搜索效率低、可操作性差和收敛速度慢等不足.为弥补其不足,并借鉴灰狼优化算法(Grey wolf optimizer,GWO)的优势,提出了一种COA与GWO的混合算法(Hybrid COA with GWO,HCOAG).首先提出了一种改进的COA(Improved COA,ICOA),即将一种高斯全局趋优成长算子替换原算法的成长算子以提高搜索效率和收敛速度,并提出一种动态调整组内郊狼数方案,使得算法的搜索能力和可操作性都得到增强;然后提出了一种简化操作的GWO(Simplified GWO,SGWO),以提高算法的可操作性和降低其计算复杂度;最后采用正弦交叉策略将ICOA与SGWO二者融合,进一步获得更好的优化性能.大量的经典函数和CEC2017复杂函数优化以及K-Means聚类优化的实验结果表明,与COA相比,HCOAG具有更高的搜索效率、更强的可操作性和更快的收敛速度,与其他先进的对比算法相比,HCOAG具有更好的优化性能,能更好地解决聚类优化问题.展开更多
灰狼优化算法(Grey Wolf Optimizer,GWO)和人工蜂群算法(Artificial Bee Colony,ABC)是两种流行且高效的群智能优化算法. GWO具有局部搜索能力强等优势,但存在全局搜索能力弱等缺陷;而ABC具有全局搜索能力强等优点,但存在收敛速度慢等不...灰狼优化算法(Grey Wolf Optimizer,GWO)和人工蜂群算法(Artificial Bee Colony,ABC)是两种流行且高效的群智能优化算法. GWO具有局部搜索能力强等优势,但存在全局搜索能力弱等缺陷;而ABC具有全局搜索能力强等优点,但存在收敛速度慢等不足.为实现二者优势互补,提出了一种GWO与ABC的混合算法(Hybrid GWO with ABC,HGWOA).首先,使用静态贪心算法替代ABC雇佣蜂阶段中的动态贪心算法来强化探索能力,同时为弥补其收敛速度降低的不足,提出一种新型的搜索蜜源方式;然后,去掉影响收敛速度的侦查蜂阶段,在雇佣蜂阶段再添加反向学习策略,以避免搜索陷入局部最优;最后,为了平衡以上雇佣蜂阶段的探索能力,在观察蜂阶段,自适应融合GWO,以便增强开采能力和提高优化效率.大量的函数优化和聚类优化的实验结果表明,与state-of-the-art方法相比,HGWOA具有更好的优化性能及更强的普适性,且能更好地解决聚类优化问题.展开更多
文摘郊狼优化算法(Coyote optimization algorithm,COA)是最近提出的一种新颖且具有较大应用潜力的群智能优化算法,具有独特的搜索机制和能较好解决全局优化问题等优势,但在处理复杂优化问题时存在搜索效率低、可操作性差和收敛速度慢等不足.为弥补其不足,并借鉴灰狼优化算法(Grey wolf optimizer,GWO)的优势,提出了一种COA与GWO的混合算法(Hybrid COA with GWO,HCOAG).首先提出了一种改进的COA(Improved COA,ICOA),即将一种高斯全局趋优成长算子替换原算法的成长算子以提高搜索效率和收敛速度,并提出一种动态调整组内郊狼数方案,使得算法的搜索能力和可操作性都得到增强;然后提出了一种简化操作的GWO(Simplified GWO,SGWO),以提高算法的可操作性和降低其计算复杂度;最后采用正弦交叉策略将ICOA与SGWO二者融合,进一步获得更好的优化性能.大量的经典函数和CEC2017复杂函数优化以及K-Means聚类优化的实验结果表明,与COA相比,HCOAG具有更高的搜索效率、更强的可操作性和更快的收敛速度,与其他先进的对比算法相比,HCOAG具有更好的优化性能,能更好地解决聚类优化问题.
文摘灰狼优化算法(Grey Wolf Optimizer,GWO)和人工蜂群算法(Artificial Bee Colony,ABC)是两种流行且高效的群智能优化算法. GWO具有局部搜索能力强等优势,但存在全局搜索能力弱等缺陷;而ABC具有全局搜索能力强等优点,但存在收敛速度慢等不足.为实现二者优势互补,提出了一种GWO与ABC的混合算法(Hybrid GWO with ABC,HGWOA).首先,使用静态贪心算法替代ABC雇佣蜂阶段中的动态贪心算法来强化探索能力,同时为弥补其收敛速度降低的不足,提出一种新型的搜索蜜源方式;然后,去掉影响收敛速度的侦查蜂阶段,在雇佣蜂阶段再添加反向学习策略,以避免搜索陷入局部最优;最后,为了平衡以上雇佣蜂阶段的探索能力,在观察蜂阶段,自适应融合GWO,以便增强开采能力和提高优化效率.大量的函数优化和聚类优化的实验结果表明,与state-of-the-art方法相比,HGWOA具有更好的优化性能及更强的普适性,且能更好地解决聚类优化问题.
文摘在居民对饮食品质要求逐步提升的今天,优化生鲜农产品物流配送线路可节约成本,提升相关企业经营效率。首先研究生鲜农产品配送线路优化模型,给出车辆路径问题(vehicle routing problem,简称VRP)和有时间窗车辆路径问题(vehicle routing problems with time windows,简称VRPTW)模式,进而完成生鲜农产品物流配送路径的遗传算法聚类优化设计,给出遗传算法聚类优化实现步骤。采用Matlab完成试验设计,研究生鲜农产品运输外部相似性,分析物流配送聚类结果以及组内路径求取结果,并进行性能测试。结果表明,本方法能够科学配置物流线路,阶跃生鲜运输车辆数目并提高满载率。