The regioselective acylation of unprotected phenylethyl glucoside withcinnamoyl chloride leads to 6-OH cin-namoylated glucoside. In this manner, thirteen phenylpropanoidglycoside analogs were designed and prepared. Th...The regioselective acylation of unprotected phenylethyl glucoside withcinnamoyl chloride leads to 6-OH cin-namoylated glucoside. In this manner, thirteen phenylpropanoidglycoside analogs were designed and prepared. Their structure was confirmed by ~1H NMR and ^(13)CNMR spectra.展开更多
For investigating the biological function of ADPR, four novel analogues (compounds 2-5) in which the pyrophosphate linkage was replaced by the aspartic acid dipeptide were synthesized. 5'-Amino adenosine or its ana...For investigating the biological function of ADPR, four novel analogues (compounds 2-5) in which the pyrophosphate linkage was replaced by the aspartic acid dipeptide were synthesized. 5'-Amino adenosine or its analogues was used as the starting material, liquid phase peptide synthesis strategy was used to construct these ADPR analogues. The structures were characterized by 1H NMR and HRMS spectra. This study provides a versatile synthesis of peptide modified ADPR analogues and helps to understand the structure-activity relationship of ADPR.展开更多
文摘The regioselective acylation of unprotected phenylethyl glucoside withcinnamoyl chloride leads to 6-OH cin-namoylated glucoside. In this manner, thirteen phenylpropanoidglycoside analogs were designed and prepared. Their structure was confirmed by ~1H NMR and ^(13)CNMR spectra.
基金National Natural Science Foundation of China(Grant No.20472007)the Research Found for the DocroralProgram of Higher Education
文摘For investigating the biological function of ADPR, four novel analogues (compounds 2-5) in which the pyrophosphate linkage was replaced by the aspartic acid dipeptide were synthesized. 5'-Amino adenosine or its analogues was used as the starting material, liquid phase peptide synthesis strategy was used to construct these ADPR analogues. The structures were characterized by 1H NMR and HRMS spectra. This study provides a versatile synthesis of peptide modified ADPR analogues and helps to understand the structure-activity relationship of ADPR.