期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于类内分块PCA方法的人脸表情识别 被引量:5
1
作者 龚婷 胡同森 田贤忠 《机电工程》 CAS 2009年第7期74-76,共3页
主成分分析方法(PCA)是目前广泛应用在人脸等图像识别领域的重要手段。为了更准确地识别人脸的表情信息,有效抽取出图像中对表情识别贡献较大的局部特征,提出了一种类内分块PCA方法对人脸表情进行特征提取。首先对图像进行分块,再对分... 主成分分析方法(PCA)是目前广泛应用在人脸等图像识别领域的重要手段。为了更准确地识别人脸的表情信息,有效抽取出图像中对表情识别贡献较大的局部特征,提出了一种类内分块PCA方法对人脸表情进行特征提取。首先对图像进行分块,再对分块得到的所有子图像块利用PCA方法进行鉴别分析,并计算出各类训练样本的子空间,然后计算测试样本到各类子空间的距离,最后输入最近邻分类器得到分类结果。在JAFFE人脸表情库上进行的实验结果表明,使用该方法后获得的识别率优于传统的PCA方法。 展开更多
关键词 主成分分析方法 特征提取 类内分块pca 人脸表情识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部