期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
藏族舞蹈的基本特征及其创新发展 被引量:15
1
作者 刘明华 《大舞台》 2011年第5期101-102,共2页
藏族舞蹈伴随着藏民族的形成发展而成为人们日常生活中不可缺少的审美内容。本文通过对藏族舞蹈的类别及其舞蹈动作特点的研究,探讨了藏族舞蹈创新和发展的途径,从而在继承和发展创新藏族舞蹈中,把握古老民族的基本审美特征,使发展中的... 藏族舞蹈伴随着藏民族的形成发展而成为人们日常生活中不可缺少的审美内容。本文通过对藏族舞蹈的类别及其舞蹈动作特点的研究,探讨了藏族舞蹈创新和发展的途径,从而在继承和发展创新藏族舞蹈中,把握古老民族的基本审美特征,使发展中的藏族舞蹈更具有民族特色和审美价值。 展开更多
关键词 藏族舞 类别和特征 创新和发展
下载PDF
Offline Handwritten Characters Recognition Using Moments Features and Neural Networks
2
作者 Mohamed Abaynarh Lahbib Zenkouar 《Computer Technology and Application》 2015年第1期19-29,共11页
In this paper we revise the moment theory for pattern recognition designed, to extract patterns from the noisy character datas, and develop unconstrained handwritten. Amazigh character recognition method based upon or... In this paper we revise the moment theory for pattern recognition designed, to extract patterns from the noisy character datas, and develop unconstrained handwritten. Amazigh character recognition method based upon orthogonal moments and neural networks classifier. We argue that, given the natural flexibility of neural network models and the extent of parallel processing that they allow, our algorithm is a step forward in character recognition. More importantly, following the approach proposed, we apply our system to two different databases, to examine the ability to recognize patterns under noise. We discover overwhelming support for different style of writing. Moreover, this basic conclusion appears to remain valid across different levels of smoothing and insensitive to the nuances of character patterns. Experiments tested the effect of set size on recognition accuracy which can reach 97.46%. The novelty of the proposed method is independence of size, slant, orientation, and translation. The performance of the proposed method is experimentally evaluated and the promising results and findings are presented. Our method is compared to K-NN (k-nearest neighbors) classifier algorithm; results show performances of our method. 展开更多
关键词 Neural network character recognition orthogonal moments pattern recognition.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部