提出一种应用文本特征的类别属性进行文本分类过程中的类别噪声裁剪(Eliminating class noise,ECN)的算法.算法通过分析文本关键特征中蕴含的类别指示信息,主动预测待分类文本可能归属的类别集,从而减少参与决策的分类器数日,降低分类延...提出一种应用文本特征的类别属性进行文本分类过程中的类别噪声裁剪(Eliminating class noise,ECN)的算法.算法通过分析文本关键特征中蕴含的类别指示信息,主动预测待分类文本可能归属的类别集,从而减少参与决策的分类器数日,降低分类延迟,提高分类精度.在中、英文测试语料上的实验表明,该算法的F值分别达到0.76与0.93,而且分类器运行效率也有明显提升,整体性能较好.进一步的实验表明,此算法的扩展性能较好,结合一定的反馈学习策略,分类性能可进一步提高,其F值可达到0.806与0.943.展开更多
Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provi...Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provide a highly localized time-frequency representation.For a finite set of multivariate intrinsic mode functions(IMFs) decomposed by NA-MEMD,it still raises the question on how to identify IMFs that contain the information of inertest in an efficient way,and conventional approaches address it by use of prior knowledge.In this work,a novel identification method of relevant IMFs without prior information was proposed based on NA-MEMD and Jensen-Shannon distance(JSD) measure.A criterion of effective factor based on JSD was applied to select significant IMF scales.At each decomposition scale,three kinds of JSDs associated with the effective factor were evaluated:between IMF components from data and themselves,between IMF components from noise and themselves,and between IMF components from data and noise.The efficacy of the proposed method has been demonstrated by both computer simulations and motor imagery EEG data from BCI competition IV datasets.展开更多
文摘提出一种应用文本特征的类别属性进行文本分类过程中的类别噪声裁剪(Eliminating class noise,ECN)的算法.算法通过分析文本关键特征中蕴含的类别指示信息,主动预测待分类文本可能归属的类别集,从而减少参与决策的分类器数日,降低分类延迟,提高分类精度.在中、英文测试语料上的实验表明,该算法的F值分别达到0.76与0.93,而且分类器运行效率也有明显提升,整体性能较好.进一步的实验表明,此算法的扩展性能较好,结合一定的反馈学习策略,分类性能可进一步提高,其F值可达到0.806与0.943.
基金Projects(61201302,61372023,61671197)supported by the National Natural Science Foundation of ChinaProject(201308330297)supported by the State Scholarship Fund of ChinaProject(LY15F010009)supported by Zhejiang Provincial Natural Science Foundation,China
文摘Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provide a highly localized time-frequency representation.For a finite set of multivariate intrinsic mode functions(IMFs) decomposed by NA-MEMD,it still raises the question on how to identify IMFs that contain the information of inertest in an efficient way,and conventional approaches address it by use of prior knowledge.In this work,a novel identification method of relevant IMFs without prior information was proposed based on NA-MEMD and Jensen-Shannon distance(JSD) measure.A criterion of effective factor based on JSD was applied to select significant IMF scales.At each decomposition scale,three kinds of JSDs associated with the effective factor were evaluated:between IMF components from data and themselves,between IMF components from noise and themselves,and between IMF components from data and noise.The efficacy of the proposed method has been demonstrated by both computer simulations and motor imagery EEG data from BCI competition IV datasets.