期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于多子网络预训练的脉冲神经网络分类模型
1
作者 卓明松 莫凌飞 《计算机科学》 CSCD 北大核心 2024年第S02期33-38,共6页
脉冲神经网络(Spiking Neural Network,SNN)被认为是最符合生物大脑机制的类脑计算模型,凭借其事件驱动、高能效、可解释等特点吸引了越来越多的研究关注。然而,由于脉冲的二值输出与不可微分性,SNN的训练方法仍存在一定空缺。于是借鉴... 脉冲神经网络(Spiking Neural Network,SNN)被认为是最符合生物大脑机制的类脑计算模型,凭借其事件驱动、高能效、可解释等特点吸引了越来越多的研究关注。然而,由于脉冲的二值输出与不可微分性,SNN的训练方法仍存在一定空缺。于是借鉴皮层记忆单元通过局部网络存储记忆信息的方式,提出一种基于多子网络预训练的脉冲神经网络分类方法。该方法使用样本标签信息优化了脉冲序列特征提取过程,采用改进的脉冲时间依赖可塑性学习规则预训练多个单类别特征提取子网络,并将预训练后的子网络进行无监督特征融合,有效提高了网络的特征分类能力。此外,在权重可视化与t-SNE可视化工具的帮助下,分析了方法的有效性。所提方法在MNIST与Fashion-MNIST数据集上分别取得了97.40%与88.81%的分类准确度。 展开更多
关键词 脉冲神经网络 脉冲时间依赖可塑性 类别特征提取子网络 无监督特征融合 类脑计算
下载PDF
基于面孔知觉的刻板印象激活两阶段模型 被引量:12
2
作者 张晓斌 佐斌 《心理学报》 CSSCI CSCD 北大核心 2012年第9期1189-1201,共13页
从个体建构研究视角出发,考察了基于面孔知觉的刻板印象激活过程。实验一比较了性别分类判断、启动范式以及同时呈现范式下刻板印象匹配性判断三者所用反应时的差异,结果发现,后者显著地大于前二者,且等于前二者之和;面孔倒置呈现使同... 从个体建构研究视角出发,考察了基于面孔知觉的刻板印象激活过程。实验一比较了性别分类判断、启动范式以及同时呈现范式下刻板印象匹配性判断三者所用反应时的差异,结果发现,后者显著地大于前二者,且等于前二者之和;面孔倒置呈现使同时呈现范式下刻板印象匹配判断的反应时和错误率显著增大,但其对启动范式中刻板印象匹配判断的反应时和错误率没有影响。实验二基于同时呈现范式,通过不同程度的面孔变形来操纵性别类别提取的难度,更精确地探讨了基于面孔知觉的社会类别信息提取过程对刻板印象激活的影响,结果表明,随着从面孔中提取类别信息难度的增加,刻板印象激活所用的反应时也逐渐增大。研究结果证实了研究者所提出的刻板印象激活两阶段模型,即基于面孔知觉的社会类别提取阶段和刻板印象信息激活阶段,证实社会类别激活和刻板印象信息激活是两个分离的过程,以社会类别信息提取为目的的面孔知觉对刻板印象的激活有显著影响。 展开更多
关键词 刻板印象激活两阶段模型 面孔知觉 同时呈现范式 个体建构 类别提取
下载PDF
遥感图像线性影纹理解专家系统设计与实现 被引量:2
3
作者 李百寿 秦其明 +2 位作者 许军强 张万峰 姚云军 《测绘科学》 CSCD 北大核心 2008年第2期167-169,109,共4页
线性影纹信息是遥感图像中的一类重要信息,线性影纹信息自动提取是遥感图像智能解译的重要研究领域。笔者采用基于特征对象的专家系统技术来完成线性影纹信息的简单类别提取,设计并实现了线性影纹理解专家系统;阐明了系统结构,解译规则... 线性影纹信息是遥感图像中的一类重要信息,线性影纹信息自动提取是遥感图像智能解译的重要研究领域。笔者采用基于特征对象的专家系统技术来完成线性影纹信息的简单类别提取,设计并实现了线性影纹理解专家系统;阐明了系统结构,解译规则获取、表达,基于消息的不确定性推理机及解释机的设计;最后利用系统做了线性影纹类别提取实验,结果表明基于特征对象的专家系统用于线性影纹类别自动提取是切实可行的,并具有较高的提取精度。 展开更多
关键词 线性影纹 特征对象 遥感图像理解专家系统 结构设计 类别提取
下载PDF
Web搜索结果多层聚类方法研究 被引量:1
4
作者 庞观松 蒋盛益 +2 位作者 张黎莎 区雄发 赖旭明 《情报学报》 CSSCI 北大核心 2011年第5期464-470,共7页
为了便于用户浏览搜索引擎返回结果,本文提出了一种基于TFIDF新的文本相似度计算方法,并提出使用具有近似线性时间复杂度的增量聚类算法对文本进行多层聚类的策略。同时,提出了一种从多文本中提取关键词的策略:提取簇中的名词或名词短... 为了便于用户浏览搜索引擎返回结果,本文提出了一种基于TFIDF新的文本相似度计算方法,并提出使用具有近似线性时间复杂度的增量聚类算法对文本进行多层聚类的策略。同时,提出了一种从多文本中提取关键词的策略:提取簇中的名词或名词短语作为候选关键词,综合考虑每个候选关键词的词频、出现位置、长度和文本长度设置加权函数来计算其权重,不需要人工干预以及语料库的协助,自动提取权重最大的候选关键词作为类别关键词。在收集的百度、ODP语料以及公开测试的实验结果表明本文提出方法的有效性。 展开更多
关键词 文本聚类 多层聚类 类别关键词提取 加权函数
下载PDF
Noise-assisted MEMD based relevant IMFs identification and EEG classification 被引量:5
5
作者 SHE Qing-shan MA Yu-liang +2 位作者 MENG Ming XI Xu-gang LUO Zhi-zeng 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期599-608,共10页
Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provi... Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provide a highly localized time-frequency representation.For a finite set of multivariate intrinsic mode functions(IMFs) decomposed by NA-MEMD,it still raises the question on how to identify IMFs that contain the information of inertest in an efficient way,and conventional approaches address it by use of prior knowledge.In this work,a novel identification method of relevant IMFs without prior information was proposed based on NA-MEMD and Jensen-Shannon distance(JSD) measure.A criterion of effective factor based on JSD was applied to select significant IMF scales.At each decomposition scale,three kinds of JSDs associated with the effective factor were evaluated:between IMF components from data and themselves,between IMF components from noise and themselves,and between IMF components from data and noise.The efficacy of the proposed method has been demonstrated by both computer simulations and motor imagery EEG data from BCI competition IV datasets. 展开更多
关键词 multichannel electroencephalography noise-assisted multivariate empirical mode decomposition Jensen-Shannondistance brain-computer interface
下载PDF
Recognition of newspaper printed in Gurumukhi script
6
作者 Rupinder Pal Kaur Manish Kumar Jindal Munish Kumar 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2495-2503,共9页
In this work,a system for recognition of newspaper printed in Gurumukhi script is presented.Four feature extraction techniques,namely,zoning features,diagonal features,parabola curve fitting based features,and power c... In this work,a system for recognition of newspaper printed in Gurumukhi script is presented.Four feature extraction techniques,namely,zoning features,diagonal features,parabola curve fitting based features,and power curve fitting based features are considered for extracting the statistical properties of the characters printed in the newspaper.Different combinations of these features are also applied to improve the recognition accuracy.For recognition,four classification techniques,namely,k-NN,linear-SVM,decision tree,and random forest are used.A database for the experiments is collected from three major Gurumukhi script newspapers which are Ajit,Jagbani and Punjabi Tribune.Using 5-fold cross validation and random forest classifier,a recognition accuracy of 96.19%with a combination of zoning features,diagonal features and parabola curve fitting based features has been reported.A recognition accuracy of 95.21%with a partitioning strategy of data set(70%data as training data and remaining 30%data as testing data)has been achieved. 展开更多
关键词 newspaper recognition feature extraction CLASSIFICATION Gurumukhi script random forest
下载PDF
Cluster analysis of the domain of microseismic event attributes for fl oor water inrush warning in the working face
7
作者 Shang Guo-Jun Liu Xiao-Fei +3 位作者 Li Li Zhao Li-Song Shen Jin-Song Huang Wei-Lin 《Applied Geophysics》 SCIE CSCD 2022年第3期409-423,471,472,共17页
Differences are found in the attributes of microseismic events caused by coal seam rupture,underground structure activation,and groundwater movement in coal mine production.Based on these differences,accurate classific... Differences are found in the attributes of microseismic events caused by coal seam rupture,underground structure activation,and groundwater movement in coal mine production.Based on these differences,accurate classification and analysis of microseismic events are important for the water inrush warning of the coal mine working facefloor.Cluster analysis,which classifies samples according to data similarity,has remarkable advantages in nonlinear classification.A water inrush early warning method for coal minefloors is proposed in this paper.First,the short time average over long time average(STA/LTA)method is used to identify effective events from continuous microseismic records to realize the identification of microseismic events in coal mines.Then,ten attributes of microseismic events are extracted,and cluster analysis is conducted in the attribute domain to realize unsupervised classification of microseismic events.Clustering results of synthetic andfield data demonstrate the effectiveness of the proposed method.The analysis offield data clustering results shows that thefirst kind of events with time change rules is of considerable importance to the early warning of water inrush from the coal mine working facefloor. 展开更多
关键词 signal detection attribute extraction cluster analysis and water disaster warning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部