基于密度的局部离群点检测算法(LOF)不适用于解决高维度、多义性的数据集检测.通过对LOF算法的分析,提出了一种基于多标记学习(Multi-Label Learning,MLL)的局部离群点检测算法MLL-LOF(a local outlier factor based on multi-label lea...基于密度的局部离群点检测算法(LOF)不适用于解决高维度、多义性的数据集检测.通过对LOF算法的分析,提出了一种基于多标记学习(Multi-Label Learning,MLL)的局部离群点检测算法MLL-LOF(a local outlier factor based on multi-label learning).该算法采用MLL框架,首先将真实对象数据拆分成多示例包形式,然后运用退化策略及相应的权重调整,计算最终离群点因子,判别离群点.并运用实际企业的监控数据将MLL-LOF算法与其他经典的局部离群点检测算法进行了对比实验,结果表明提出的MLL-LOF算法检测的精准率、召回率、F1值以及时间效率均优于传统的局部离群点检测算法.展开更多
文摘基于密度的局部离群点检测算法(LOF)不适用于解决高维度、多义性的数据集检测.通过对LOF算法的分析,提出了一种基于多标记学习(Multi-Label Learning,MLL)的局部离群点检测算法MLL-LOF(a local outlier factor based on multi-label learning).该算法采用MLL框架,首先将真实对象数据拆分成多示例包形式,然后运用退化策略及相应的权重调整,计算最终离群点因子,判别离群点.并运用实际企业的监控数据将MLL-LOF算法与其他经典的局部离群点检测算法进行了对比实验,结果表明提出的MLL-LOF算法检测的精准率、召回率、F1值以及时间效率均优于传统的局部离群点检测算法.