期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
类别标签辅助改进稠密网络的变工况轴承故障诊断 被引量:3
1
作者 孙洁娣 刘保 +3 位作者 温江涛 时培明 闫盛楠 肖启阳 《振动与冲击》 EI CSCD 北大核心 2022年第17期204-212,共9页
基于数据驱动的滚动轴承智能故障诊断得到广泛研究,但多数研究中均假设训练数据与测试数据同分布,考虑到旋转机械实际运转中复杂多变的工况往往导致数据分布产生偏差,使得识别方法的通用性差、实际识别效果不佳。将域适应引入轴承故障... 基于数据驱动的滚动轴承智能故障诊断得到广泛研究,但多数研究中均假设训练数据与测试数据同分布,考虑到旋转机械实际运转中复杂多变的工况往往导致数据分布产生偏差,使得识别方法的通用性差、实际识别效果不佳。将域适应引入轴承故障诊断过程中,基于迁移学习提出了一种特征空间域和标签概率分布同步适应的迁移学习网络。该网络将一维稠密卷积网络及注意力机制融合实现复杂故障特征的自动提取;域适应处理通过联合最小化特征概率分布差异和标签概率分布差异来约束网络学习域不变特征;最终对变工况滚动轴承故障实现了高准确度的识别。实验结果表明了该方法的可行性及良好的性能。 展开更多
关键词 轴承故障诊断 变工况 稠密卷积网络 注意力机制 类别标签辅助
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部